
1 Introduction

1.1 The issue

This paper considers the identification of a structural linear equation using quantile re-

gression in the presence of endogeneity problems. Since the seminal work by Koenker

and Bassett (1978), there are two trends in the literature on quantile regressions when

dealing with endogeneity. The first one, denoted the ‘structural setting,’corresponds

to models directly specified in terms of the conditional quantile of the structural equa-

tion of interest. In that case, semiparametric restrictions needed for identification are

directly imposed on the structural errors terms, or on the structural model if there are

no separable errors. The second trend, denoted the ‘fitted-value setting,’is based on

the conditional quantile of the reduced-form equation. Accordingly, the restrictions

are imposed on the reduced-form errors when they can be separated. In this later

setting, the analysts substitute the endogenous regressors with the fitted-values ob-

tained from ancillary equations based on some exogenous variables. The fitted-value

setting corresponds to quantile restrictions on the reduced form. As noted in Blundell

and Powell (2006): “The reduced form for yt may be of interest if the values of IVs

are control variables for the policy maker.”The fitted-value setting has also algebraic

and computational advantages. However, the reduced form can also be viewed as an

intermediary stage for calculations. Amemiya (1974) pointed out that, while substi-

tution of fitted values in nonlinear structural functions generally yields inconsistent

estimates of the structural parameters, consistent estimation methods that substitute

fitted values into the structural function can rely on linearity of the regression, where

the model is based on the reduced form error, with similar stochastic properties to

the structural error. Even in the context of linear models for quantile regressions,
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it is believed that this setting corresponds to constant effect models, a little attrac-

tive characteristics. That is: it is believed that all coeffi cients, except the intercept,

must be the same for all quantiles, as discussed in Lee (2007, p1138): “ ‘the fitted

value’approach, which is developed by Amemiya (1982) and Powell (1983), replaces

X with the fitted value of µ + Z ′π in the system: Y = Xβ(τ) + Z ′1γ(τ) + U and

X = µ(α) + Z ′π(α) + V . To see how the fitted value approach works, consider the

reduced-form equation for Y : Y = β [µ+ Z ′π]+Z ′1γ+η, where η = U+βV . In order

to estimate β and γ consistently, the fitted value approach requires that Qη|Z(τ |z)

be independent of z.”1 The latter corresponds to the constant effect case for the sec-

ond stage of the estimated quantile regression model. This criticism has not been

addressed in the recent literature, other than by falling back to the structural setting,

or by assuming constant effect for the true quantile process. We deal with this gap. In

this paper, we exhibit a particular case of non-constant effect (i.e., quantile-dependent

coeffi cients) for linear quantile regression with the fitted-value setting.

The literature on the structural setting for linear quantile regressions is abundant,2

while it meets computation costs for correcting endogeneity issues.3 In contrast,

the fitted-value setting corresponds to a simple two-step quantile regression proce-

dure, analogous to the 2SLS method, and has been readily employed by empirical

researchers who are not always expert econometricians or programmers, conveniently

1We do not make explicit the notations here, as they are rather obvious and this is only a citation.

However, the reader in doubt may refer to Lee’s paper for full details.
2See for example: Abadie et al. (2002), Chen et al. (2003), Chesher (2003), Hong and Tamer

(2003), Chernozhukov and Hansen (2005, 2006, 2008), Imbens and Newey (2006), Ma and Koenker

(2006), Chernozhukov, Imbens and Newey (2007), Lee (2007), Jun (2009), Chernozhukov, Fernandez-

Val and Kowalski (2015).
3As documented in Kim and Muller (2013).
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avoiding computation burden.4 Namely, with the fitted-value setting, no control func-

tion nonparametric estimation, no simulations, no computation iteration or grid are

necessary. Partial theoretical results had been obtained by Amemiya (1982) and Pow-

ell (1983), who analyse the two-stage least-absolute-deviations estimators in simple

settings, and by redefining the dependent variable. Chen and Portnoy (1996) and

Kim and Muller (2004, 2015) investigate such two-stage quantile regressions with di-

verse first-step estimators (LS, LAD, and trimmed least squares estimators) and in

general settings.

However, according to Lee (2007)’s analysis, all these authors deal with constant

effect specifications. In contrast, our focus in this paper is the occurrence of non-

constant effect with the fitted-value setting, although heterogeneity will still not be

allowed for a subset of model coeffi cients (for endogeneous or exogenous variables,

depending on hypotheses).

For this, we first show that any separable model can be made to satisfy a quantile

restriction for any quantile θ, provided it allows for an inconsistency term, which

we characterize. Second, we show how the influence of the inconsistency term can

be weakened in terms of its link with covariate effects. This is done by assuming

some weakened IV conditions, which may even allow for endogenous regressors in the

reduced form. Under these new IV conditions, we show that non-constant effect can

arise in linear quantile regression even under endogeneity dealt with the fitted-value

setting. However, in that case, only the constant effect coeffi cients can be identified.

Finally, we show that the constant effect (respectively, non-constant effect) coeffi cients

of the reduced form can be simply transmitted to constant effect (respectively, non-

constant effect) coeffi cients in the structural equation.

4Arias et al. (2001), Garcia et al. (2001), Chortareas et al. (2012) and Chepatrakul et al. (2012).
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1.2 Practical examples

We now illustrate our reflections with a few economic examples in which constant

effect occurs at least for some variables in the regressions. A first illustration is

the assessment of a policy rule that, first, is constant for an identifiable population,

and second, affects an outcome variable that is shifted by a quantity proportional to

the policy rule. For example, one may wish to assess the impact of a cash transfer

program on family earnings. Let yt be the total earnings of family t and Yt be the

policy treatment, which is here a dummy variable describing whether or not the

family is covered by the program. Assume that the treated families can be identified

through some observable characteristics, for example, because they live in a specific

place or have given socio-demographic characteristics. For example, in France, family

allowances are implemented through cash transfers that are exclusively based on the

number of children by age class in the family (ADECRI, 2008). The information

on family composition is generally observed in household surveys, which could be

used to run a regression of family earnings. In that case, the transfer amount, which

is the constant parameter γ to estimate, is generally not or is ill observed in the

surveys. However, the treatment dummy variable (Yt) can be observed, while it may

be endogenous. For example, families with unobserved low motivation for work may

have more children and lower income. This may be the case if having children is used

by some families to access social aid and compensate for insuffi cient incomes.

Another illustration is the assessment of the impact on household income of taxes

calculated from observable categories of household. Assume that these unobserved

tax amounts are fixed within each household category. Then, when running a quantile

regression with the household net income as a dependent variable, the taxes can be

described by a vector of fixed coeffi cients γ that measures the role of the dummy
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variables specifying the household categories. Another example is that of racketing

extraction tariffs imposed by mafia organisations, which have the same property of

being fixed for some given categories of businesses, while their actual amounts are

generally unobservable by researchers.

A final illustration is the assessment of the contribution to total family expenditure

of some unobserved expenses for a discrete good, or a discrete service, when its price

is fixed (e.g, when provided by public institutions). For example, the acquisition or

the ownership of a given durable good with fixed characteristics might be observable,

but not its fixed price. Estimating the corresponding coeffi cient γ would allow some

inference about the unobserved price.

In all of these illustrations, we have constant effect for a treatment variable of

interest. In these models, other variables x1t that determine the studied outcomes

may be included.5 In the considered examples, their coeffi cients β should generally

correspond to non-constant effect. Indeed, the economic theory does not provide any

reason for imposing constant effect for these variables. Such non-constancy is likely

to generate a specification bias in quantile regressions that would wrongly assume

constant coeffi cients for these variables. However, if the interest of the researcher is

exclusively in the coeffi cients γ of the structural endogenous regressors, the fact that

the coeffi cients β of the structural exogenous regressors have non-constant effect that

cannot be identified in the fitted-value setting is not an issue as long as constant effect

coeffi cients can be identified, which we show in this paper.

Finally, some observed variability in the treatment can easily be incorporated in

these cases by interacting the treatment variable with some observed characteristics,

or by considering subpopulations defined in terms of these characteristics. This is an

easy way to relax too stringent specifications of constant effect.

5We shall be able to relax the exogeneity assumption later on.
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The paper is organized as follows. Section 2 presents the model and the assump-

tions. In Section 3, we exhibit and analyse a case of non-constant effect for the

fitted-value setting. Finally, we conclude the paper in Section 4.

2 The Model

Assume that our interest lies in the parameter vector αθ ≡ (β′θ, γ
′
θ)
′ in the following

linear equation for T observations and an arbitrary quantile index θ ∈ (0, 1) that will

denote quantile restrictions introduced later on.

yt = x′1tβθ + Y ′t γθ + utθ = z′tαθ + utθ, (1)

where [yt, Y
′
t ] is a (G+ 1)-row vector of endogenous variables, x′1t is a K1-row vector

of exogenous variables, zt = [x′1t, Y
′
t ]
′ and utθ is an error term.

Since we wish to study non-constant effect models, we emphasize that the coeffi -

cient vector and the errors may vary with the considered quantile index θ. We denote

by x′2t the row vector of the K2 exogenous variables excluded from (1), and we assume

K2 ≥ G. We further assume that Yt can be linearly predicted from the exogenous

variables through the following equation, which we assume to be correctly specified.

Y ′t = x′tΠ + V ′t , (2)

where x′t = [x′1t, x
′
2t] is an unbounded K-rows vector with K = K1+K2, Π is a K×G

matrix of unknown parameters, and V ′t is a G-row vector of unknown error terms.

Again, some stochastic assumptions on the errors Vt must be made so as to complete

(2) for defining a correctly specified model. For example, to fix ideas, one may assume

that the conditional expectation of Vt is zero, as for OLS estimation, thus ensuring

the consistency of the fitted-value for Yt; or alternatively some quantile restriction at
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a quantile θ as in Kim and Muller (2004). To avoid absurdities, we assume that the

columns in xt are linearly independent. Using (1) and (2), yt can also be expressed

as:

yt = x′tπθ + vtθ, (3)

where

πθ = H(Π)αθ with H(Π) =

 IK1

0

 ,Π

 (4)

and vtθ = utθ + V ′t γθ.

Again here, we allow for the vector of coeffi cients πθ to vary with the quantile θ.

We first consider the following quantile restriction on the reduced-form errors for a

given quantile θ0.

Assumption 1: E(ψθ0(vtθ0)|xt) = 0, for an arbitrary given θ0 ∈ (0, 1), where

ψθ(z) ≡ θ − 1[z≤0], and 1[.] is the indicator function.

Assumption 1 imposes that zero is the given θth0 -quantile of the conditional distri-

bution of vtθ0 . This assumption allows the identification of the coeffi cients αθ of the

quantile regression model centered in quantile θ0. It is associated with the fitted-value

setting in which, first, the conditional quantile restriction is placed on the reduced-

form error vtθ0 , and second, the information set used for the conditional restriction

exclusively consists of the exogenous variables xt. It has been used in Amemiya (1982),

Powell (1983), Chen and Portnoy (1996), and Kim and Muller (2004, 2015). In par-

ticular, Kim and Muller (2015) provide an analysis of asymptotic properties based

on this assumption and with broad stochastic conditions. One issue is how quantile

restrictions for different quantiles come together so as to define a unique quantile

process for a single model; that is, so that all these restrictions are compatible. The
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analysis we pursue will clarify this point, which is at the core of understanding the

possible non-constancy of effects.

The link of structural and reduced-form parameters is described by (4). Identifi-

cation of the structural parameters is obtained from the following assumption.

Assumption 2: H(Π) is of full column rank.

Assumption 2 is the usual necessary condition for IV regressions, for example,

obtained through usual exclusion restrictions. This is an identification condition for

simultaneous linear equations models. A first-stage estimator of Π in (2), Π̂, allows

the construction of the fitted value Ŷ ′t = x′tΠ̂, which is substituted for Y
′
t in the final

estimation stage. We define, for any quantile θ, the two-stage quantile regression

estimator α̂θ of αθ as a solution to:

min
α

ST (α, Π̂, θ) =
T∑
t=1

ρθ(yt − x′tH(Π̂)α), where ρθ(z) = zψθ(z) (5)

In the next section, we exhibit some non-constant effect with the fitted-value setting.

3 Non-Constant Effect in the Fitted-Value Setting

3.1 Regularities and quantile restrictions

Let us start again with Equations (1) and (2), with possible non-constant effect in

structural and reduced-form equations, but without a priori imposing Assumption 1.

In order to deal with unique quantile values so as to simplify the discussion, we make

the following continuity and monotonicity assumption, for a starting value θ0 of the

quantile index.
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Assumption 3: For a given quantile index θ0, the cdf of vtθ0 conditional on xt,

denoted Fvtθ0 |xt , the cdf of vtθ0 conditional on x1t, denoted Fvtθ0 |x1t , and the marginal

cdf of x2t, denoted Fx2t , are continuous and strictly increasing.

First, note that, under Assumption 3, an inverse cdf term can always be isolated

in the reduced-form equation, for θ0, by denoting: yt = x′tπθ0 + vtθ0 = F−1vtθ0 |xt
(θ) +

x′tπ1θ0 + v∗tθ and v
∗
tθ ≡ vtθ0 − F−1vtθ0 |xt(θ). Then, by construction, v

∗
tθ is characterized

by the conditional quantile restriction: E(ψθ(v
∗
tθ)|xt) = θ − P [v∗tθ ≤ 0|xt] = θ −

P
[
vtθ0 ≤ F−1vtθ0|xt

(θ)|xt
]

= θ − θ = 0. As a consequence, one can always obtain

a quantile regression restriction at θ, even distinct from θ0, for the reduced-form,

provided one accepts a possible nuisance inconsistency term F−1vtθ0|xt
(θ) that can affect

all the coeffi cients of the model. Note that v∗tθ depends both on θ and on θ0. In the

next subsection, we weaken the quantile restriction at quantile index θ0, so as to allow

enough flexibility for generating non-constant effect.

3.2 Generating non-constant effect

Let us now return to our maintained model, but instead of Assumption 1, we now

consider the following weaker restriction.

Assumption 4: For a given quantile θ0 and under Assumption 3:

F−1vtθ0 |xt
(θ) = F−1vtθ0 |x1t

(θ), (6)

for all θ ∈ (0, 1).

The next proposition, of which proof is in the appendix, translates this assumption

in terms of conditional independence under Assumption 3.
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Proposition 1: Under Assumption 3, Assumption 4 is equivalent to: vtθ0 is inde-

pendent on x2t, conditionally on x1t.

Assumption 4 is akin to conditions in the control function literature, with here the

control function known to depend on x1t only. We do not require complete exogeneity,

as we will discuss later. Assumption 4 is also related to the notion of ‘conditional

exogeneity’in White and Chalak (2010). Note that the restriction in Assumption 4

implies that the OLS in the reduced form may be inconsistent in the allowed case

where the x1t are endogenous. One may also have E(ψθ(vtθ)|x1t) 6= 0 under this

hypothesis. This means that x1t may be endogenous in the sense of the quantile

regressions of quantile θ for equation (3). In such situation, equation (3) no longer

characterizes a typical ‘reduced form’based only on exogenous regressors, although

to simplify we still denote it the ‘reduced-form equation.’ In the remainder of this

section, we show how non-constant effect can be obtained for conditional quantiles

of the reduced-form, and then conveyed to the conditional quantiles of the structural

form.

An example is a structural wage equation for a labour market study for a sample of

workers, in which the dependent variable (yt) is the logarithm of individual wage rate,

while the two independent variables in this equation are the industrial sector dummy

(x1t) and the workers’s education level (Yt), and the regressors in the reduced form

are again the industrial sector dummy and the worker’s birth quarter (x2t). The birth

quarter is used as an instrument for her education level that is typically assumed to

be the sole endogenous independent variable in the structural model (e.g., in Angrist

and Krueger, 1991, or in Angrist and Pischke, 2009, who find constant effect for

this variable). However, in such an empirical problem, one may expect the log wage

rate to be positively correlated with the capital of the firm, omitted from the model,
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while incorporated in the error vt, and which should be typically correlated with the

industrial sector dummy. Then, x1t and vt may be correlated, while x2t and vt should

be independent according to the usual justification for using quarter of birth as an

instrument in wage equations.6

Since vtθ = utθ + V ′tθγθ, Assumption 4 for all θ can also be obtained, by assuming

that utθ and Vt are independent of x2t, conditional on x1t. Thus, this condition can

also be seen as the consequence of a natural, while strong, instrumental variable

characterization of x2t for the structural model.

We now show that Assumption 4 implies that there is constant effect in the quan-

tile regressions of the reduced-form equation for the coeffi cients of the variables in

x2t, but not necessarily for the coeffi cients of the variables in x1t.

Proposition 2: Under Assumption 3 and 4, for a quantile regression process of the

reduced form (3):

(a) There is constant effect for the variables in x2t.

(b) Non-constant effect is possible for the variables in x1t.

(c) For all θ, F−1vtθ0 |x1t
(θ) must be linear in x1t.

The proof is in the Appendix. Result (c) is implied in particular by the often used

‘linear location-scale hypothesis’in the quantile regression literature on non-constant

effect (e.g., Card and Lemieux, 1996, and Koenker, 2005, pp 104-105). In cases where

Result (c) would be judged a too unrealistic consequence, this can be easily relaxed

by incorporating polynomial terms in x1t, or splines, in the model, as is usual for

approximating nonlinear functions. Alternatively, one could specify a reduced form

6Conditioning on the industrial sector might make the hypothesis of independence of the birth

quarter and the error more plausible if the sector was a common determinant of the latter two

variables, although it is unclear why this should be the case.
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(3) as being partially linear in x2t, and possibly nonlinear in x1t, with an unknown

nonlinear functional form. In that case, the above reasoning delivering constant effects

for x2t and unrestricted (nonlinear) effect for x1t would remain valid, and Result

(c) would not be necessary. However, this would push us toward nonparametric

estimation methods, which is not what we discuss in this paper. Finally, instead of

imposing Assumption 4, one may first test for which coeffi cients the hypothesis of

constant effect is not rejected in a typical quantile regression estimation. This would

guide the specification of Assumption 4 in the considered data. In the next subsection,

we discuss the identification of the reduced-form parameters under Assumption 4.

3.3 Identification

The next proposition characterizes the identification of quantile regression estimators

under Assumptions 3 and 4.

Proposition 3: Under Assumptions 3 and 4, which imply the linearity property

(F−1vtθ0 |x1t
(θ) = x′1tπ1Fθ), the non-identification in the θ

th conditional quantile regres-

sion estimator of the reduced-form linear model (3) can be confined to the first K1

variables, for any quantile index θ possibly distinct from θ0. That is:, the coeffi cients

π2θ = π2 of the x2t variables in the reduced form are identified.

The proof is in the Appendix. The reason for the results in Proposition 3 is that

under vt independent on x2t conditionally on x1t, only the coeffi cient of x2t can be

identified through solving these K2 orthogonality conditions, even conditionally on

x1t.

In these conditions, as seen before, non-constant effect is possible for the condi-

tional quantiles of the reduced form for π1θ for any θ, even though Assumption 4 is

made only for the value θ0. There is no constant effect for π2 that has been shown not
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to vary with θ. For example, a special case of non-constant effect quantile regression

can be parameterized such as: π1θ = π1 + θ. However, even though the exhibited

non-constant effect in the reduced form allows for generalization of the model as com-

pared to constant effect cases, the non-constant effect parameters cannot be identified

with usual quantile regression settings. Though, the other parameters of the model

can be consistently estimated.

One may also want to consider fully specified quantile regressions, while only

at some quantiles. In that case, one may require Assumption 1 for these quantiles

only, keeping Assumption 4 for other quantiles. Jun (2008) studies variations across

quantiles of identification through instrument variables. This suggests an interest in

applying different semi-parametric IV restrictions at different quantiles. This would

allow for many distinct models with (partial) non-constant effect.

3.4 Transmitting the non-constant effect to the structural

form

We now assess the consequences for the structural model of the partial occurrence

of non-constant effects in the reduced form. As we discussed before, Assumption 4

implies that the parameter πθ = (π′1θ, π
′
2θ)
′ in the reduced form model (3), where vtθ

satisfies E(ψθ(vtθ)|xt) = 0, is such that π2θ is identified and corresponds to constant

effect, while π2θ is not identified and may allow for non-constant effect.

Proposition 4: Under Assumptions 3 and 4, for the stuctural quantile model (1)

with the fitted-value setting based on the predictive equation (2):

(a) The coeffi cient vector γθ of the endogenous regressors in the structural model

does not vary with the quantile index θ: γθ = γ for all θ ∈ (0, 1). Endogenous
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variables have constant effects and the coeffi cient vector γ is identified.

(b) The coeffi cient vector βθ of the exogenous regressors in the structural model

can vary with the quantile index θ. Exogenous variables may have non-constant effect.

However, the coordinates of βθ exhibit exactly the same unknown inconsistency term

as their respective coeffi cients π1θ in the reduced-form model. The vector βθ is not

identified in general.

The proof is in the Appendix. When a first-stage estimation is performed based

on (2), the independent variables xt consists of vectors x1t and x2t. If a non-zero

asymptotic inconsistency term is present only in the coeffi cients of x1t in the reduced-

form estimator π̂θ, which is the case on which we focus, then the non-zero asymptotic

inconsistency in the second-stage estimator α̂θ = [β̂
′
θ, γ̂
′
θ]
′ is exclusively confined to

the coeffi cients of x1t; that is, only βθ is not identified. Therefore, the parameter

(γθ) for the endogenous variable Yt in the structural equation in (1) can be identified.

In this setting, because π2 is characterized by constant effect, and because γθ is not

connected to π1θ, we have also constant effect for γθ. In contrast, a non-constant

effect may occur for βθ.

Allowing for the weakened IV condition in Assumption 4 has enabled us to intro-

duce non-constant effect on the vector βθ, even though this parameter is not identified.

This alone is a generalization of the stricto sensu constant effect structural quantile

regression, which may be useful if the researcher’s interest is concentrated on vector

γ that is identified and can be estimated consistently. Indeed, this setting avoids mis-

specification of the quantile regression, if the true DGP involves non-constant effect

for βθ and constant effect for γ.
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4 Conclusion

In this paper, we have shown how some particular cases of non-constant effect can be

obtained with two-stage quantile regressions based on the fitted-value setting under

endogeneity. However, we have also established that only the coeffi cients of constant-

effect variables can be identified, even though non-constant effect is present for the

other variables. Finally, we have discussed a few practical examples where our ap-

proach would be useful.

Our results are based on relatively little demanding instrumental variable condi-

tions, for example that the reduced-form errors (or the structural errors) are indepen-

dent of SOME excluded variables, conditionally on the other independent variables.

Such weakening of the usual IV conditions is potentially useful since convincing in-

struments are typically diffi cult to find. Then, any reduction in the set of necessary

instruments is valuable.

Our approach is also interesting because a quantile regression model with constant

effect for one coeffi cient only (or a few coeffi cients only) is much more general that a

general constant effect for all coeffi cients of a quantile regression model. Thus, our

approach corresponds to a specification that is intermediate between the constant

effect quantile model and the fully non-constant effect quantile model.
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Proofs:

Proof of Proposition 1: Let us first consider Assumption 4 without the variables

x1t, that is, F−1vtθ0 |x2t
(θ) = F−1vtθ0(θ), for all θ, which we wish to show to be equivalent to:

vtθ0 is independent of x2t. By definition, under Assumption 3, the latter statement

means that fvtθ0 ,x2t(v, w) = fvtθ0 (v) fx2t(w), for all v and w, and where fvtθ0 ,x2t is the

joint pdf of vtθ0 and x2t, fvtθ0 is the marginal pdf of vtθ0 , and fx2t is the marginal pdf

of x2t. Since, under Assumption 3, there is no level of x2t with vanishing marginal

pdf, we can rewrite the equality as fvtθ0 (v) = fvtθ0 ,x2t(v, w)/fx2t(w), for all v and
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w. Then, by integration with respect to v on both sides of the equality, we obtain

θ = Fvtθ0 (v) = Fvtθ0 |x2t(v |x2t = w), for all w. By inversion, thanks to Assumption

3, this is equivalent to F−1vtθ0 |x2t
(θ) = F−1vtθ0

(θ) = v, for all v, i.e., for all θ = Fvtθ0 (v).

Introducing variables x1t and conditioning on them is straightforward by considering

the different cdfs for each level of x1t. QED.

Proof of Proposition 2: Let us consider another quantile index θ different from

the previously chosen θ0 and let us impose Assumption 1 for this θ, that is: the typical

quantile restriction for a quantile θ. In that way, we can investigate the features of

a quantile regression model centered on a quantile index θ. Then, we examine how

this conditional quantile restriction can coexist with Assumption 4 assumed with the

chosen θ0.

The conditional quantile restriction at θ is: P [vtθ ≤ 0| xt] = θ, i.e., P [yt ≤ x′tπθ | xt] =

θ, which implies that P [x′1tπ1θ0 + x′2tπ2θ0 + vtθ0 ≤ x′1tπ1θ + x′2tπ2θ | xt] = θ,

where π1θ0 , π2θ0 , π1θ, π2θ are the respective components of πθ0 and πθ according to

the partition of xt into x1t and x2t. By regrouping, we obtain

P [vtθ0 ≤ x′1t (π1θ − π11θ0) + x′2t (π2θ − π2θ0) | xt] = θ,

which in turn implies that Fvt|xt [x′1t (π1θ − π1θ0) + x′2t (π2θ − π2θ0)] = θ. Finally, un-

der Assumption 3, we have

x′1t (π1θ − π1θ0) + x′2t (π2θ − π2θ0) = F−1vtθ0 |xt
(θ) = F−1vtθ0 |x1t

(θ), (7)

where the latter equality is obtained using Assumption 4. (a) Since F−1vtθ0 |x1t
(θ) does

not depend on x2t, which is not zero, equation (7) implies π2θ = π2θ0 . As a conse-

quence, we drop the dependence of π2θ on θ, which becomes π2. (b) Since there is no

restriction on the effect of the variables in x1t, their coeffi cients may vary with θ in

that case. To be consistent with (7), we must also have (c), which is therefore in fact

a consequence of the hypotheses. QED.
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Proof of Proposition 3:

We only need to check what happens when applying Assumption 4 to the identifi-

cation of the quantile regression estimator, instead of applying the complete quantile

regression restrictions nin Assumption 1. Indeed, under Assumption 4, we have the

following theoretical restrictions:

E(x2tψθ(yt − x′2tπ2θ0 − x′1t (π1θ0 + π1Fθ))) = 0, (8)

while

E(x1tψθ(yt − x′2tπ2θ0 − x′1t (π1θ0 + π1Fθ))), (9)

which is typically assumed to be zero for quantile regressions under Assumption

1, is here undetermined.

As in usual settings of quantile regressions, the restrictions of orthogonality with

respect to x2t, (8), are satisfied by the quantile regression estimator under Assumption

4. In contrast, the restrictions of orthogonality with respect to x1t, (9), may or may

not be satisfied. Therefore, there is no identification of the usual quantile regression

estimator under Assumption 4. A formal way to see it is that under Assumptions 3

and 4, we have: 0 = E(ψθ(v
∗
tθ)|xt) = E(ψθ(vtθ0 − F−1vtθ0 |xt(θ))|xt)

= E(ψθ(yt − x′tπθ0 − F−1vtθ0 |x1t(θ))|xt) = E(ψθ(yt − x′tπθ0 − x′1tπ1Fθ)|xt) = 0. This

implies:

E(xtψθ(yt − x′2tπ2θ0 − x′1t (π1θ0 + π1Fθ))) = 0. (10)

This is the linearity property that allows the definition of a non-constant effect

(π1θ0 + π1Fθ). In contrast, the second restriction (E(xtψθ(yt − x′tπθ)) = 0) defines

what is estimated
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Eq. (10) shows that π2θ0 and π1θ0 + π1Fθ are identified for quantile regression

estimation at quantile θ. Therefore, π1θ may be unidentified. The issue is that, at

that stage, one does not want to identify π1θ0 but rather π1θ.

The reduced form for quantile index θ is: yt = x′1tπ1θ + x′2tπ2θ + vtθ.

There are no reasons why π1θ and π1θ0 + π1Fθ should coincide. π1θ0 + π1Fθ is

not necessarily the parameter one want to estimate. Therefore, there should be an

estimation bias in general for the coeffi cients of x1t. Similarly, there is no reason why

we should equal vtθ and v∗tθ. QED.

Proof of Proposition 4:

We decompose the link of the reduced-form and the structural-form parameters, by

splitting system (4) into two blocks of equations, partitioning Π =

 Π1

Π2

 = [Π′1,Π
′
2]
′

according to the partition of πθ. We obtain:

π1θ = βθ + Π1γθ (11)

π2θ = Π2γθ, (12)

where π2θ = π2, which does not include an inconsistency term, is identified and does

not depend on θ, as seen above. If the system is exactly-identified (i.e., K2 = G),

then γθ can be directly expressed in terms of Π2 and π2, which implies that γθ is

identified and does not depend on θ.

For the other over-identifying case (i.e., K2 > G), there are more equations than

is necessary to identify γθ. However, similarly to 2SLS or GMM, γθ is still identified,

providing the hypotheses made are valid, and the considered models are well specified.

In that case, only G arbitrary equations in (12) can be kept to define γθ. When

estimation is considered, one can enhance the asymptotic performance of the resulting

estimators by choosing appropriate weighting matrices to combine the equations in
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(12). In either the exactly-identifying case or the over-identifying case, γθ is a function

only of Π2 and π2. Hence, the properties of identification and of constant effect in

π2θ, without inconsistency term, is conveyed to γθ ≡ γ.

On the other hand, since γθ = γ is fully determined by (12), and Π1 is given (11)

shows that βθ = π1θ−Π1γ incorporates the non-constant effect from π1θ, with exactly

the same non-identification problem and inconsistency term as in π1θ. Indeed, since

π1θ includes an unknown inconsistency term, π1θ is not identified even though Π1 and

γ are identified. In that case, βθ includes also this term and is not identified either.

QED.
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