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Abstract

We provide a unified treatment of the two approaches pioneered by Atkinson and Bourguignon (1982,
1987) [3,4] by resorting to compensation principles in the bivariate case. We treat the attributes of individual
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consists of two sufficient second-order stochastic dominance conditions. In the case where the compensated
variable has a discrete distribution, the distribution of the compensating variable must satisfy a condition
which degenerates to the Sequential Generalized Lorenz test for identical marginal distributions of the com-
pensated variable. Furthermore, the distributions of the compensated variable must satisfy the Generalized
Lorenz test.
© 2011 Elsevier Inc. All rights reserved.

JEL classification: D3; D63; I31

Keywords: Multidimensional welfare; Compensation; Dominance; Lorenz criterion

✩ We are grateful to the British Academy and to the Centre National de la Recherche Scientifique for grant
No. APN30649 that made this project possible. The first author acknowledges ESRC grant No. R000230326. We thank
Steve Bazen, Pierre-Henri Bono, Jean-Luc Prigent, John Weymark and participants of seminars at GREMAQ in Toulouse,
THEMA in Cergy-Pontoise, WIDER in Helsinki, Alicante and Barcelona, as well as the editors and the two referees for
their comments and suggestions that have helped us to greatly improve the exposition and the content of the paper.
The usual disclaimers apply.

* Corresponding author.
E-mail addresses: christophe.muller@univmed.fr (C. Muller), alain.trannoy@univmed.fr (A. Trannoy).
0022-0531/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jet.2011.09.002

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.jet.2011.09.002
http://www.elsevier.com/locate/jet
mailto:christophe.muller@univmed.fr
mailto:alain.trannoy@univmed.fr
http://dx.doi.org/10.1016/j.jet.2011.09.002


1428 C. Muller, A. Trannoy / Journal of Economic Theory 147 (2012) 1427–1449
1. Introduction

The seminal contributions of Kolm [25] and Atkinson [2] have given rise to a large literature
devoted to the quest for stochastic dominance theorems applied to welfare economics. While a
well-organized corpus of stochastic dominance theorems is available in the unidimensional case,
deriving social dominance conditions for multidimensional settings remains a major challenge in
modern welfare analysis. Social scientists and economists (such as in Sen [33]) argue that income
is not adequate as a measure of individual well-being and should instead be supplemented with
other well-being attributes such as health and education. Income varies over time and comparing
intertemporal income streams is another example of a multidimensional context. The statistical
units used in most survey sampling frames are households rather than individuals. This implies
that differences in family composition should be taken into account when dealing with welfare
comparisons. Our first contribution is to offer an integrated framework for the multidimensional
stochastic dominance literature applied to welfare analysis, which has developed in two ways:
the multidimensional dominance approach and the needs approach.

In the first of these approaches, which can be traced back to Kolm [26], all attributes are
treated symmetrically. In particular, for bivariate distributions, Atkinson and Bourguignon [3],
henceforth AB1, proposed dominance criteria for classes of utility functions defined by the signs
of their partial derivatives up to the fourth order.1 Nevertheless, it seems fair to say that no sim-
ple criterion of multidimensional dominance has yet achieved general support among applied
economists and even among theorists. This lack of success partly stems from the limited appeal
of certain conditions imposed on utility functions. Up to now, there are no broadly accepted
normative conditions for multidimensional stochastic dominance analysis, in contrast with nor-
mative conditions justified by transfer axioms for unidimensional stochastic dominance.

The landmark article by Atkinson and Bourguignon [4], henceforth AB2, is at the origin
of the needs approach. In this case, the two attributes no longer have symmetric roles and the
emphasis is on measuring income inequality while accounting for the heterogeneity of household
needs, such as that stemming from differences in family size. One attribute (e.g., family size) is
used to categorize the population into homogeneous groups, while well-being is derived from a
second attribute (income). AB2 provided a simple and elegant procedure for performing welfare
comparisons in this context: the Sequential Generalized Lorenz (SGL) quasi-ordering, which
extends the Generalized Lorenz (GL) quasi-ordering (Shorrocks [34]) to situations where the
population is partitioned into subgroups on the basis of needs.2

In the original paper AB2, the marginal distribution of needs is assumed to be the same in
the situations being compared. Subsequently, Jenkins and Lambert [24] and Chambaz and Mau-
rin [10] showed how the SGL test can be extended to the case where distributions of needs
differ, albeit at the cost of an additional restriction on utility levels. Moyes [28] and Bazen and
Moyes [7] have modified this additional restriction in order to allow the marginal distribution of
needs to play a role in the comparison. Doing this makes the two approaches less distinct and
questions the relevance of separating them.

Despite a kind of division of labor between the two approaches, it would be useful if they
could be formulated using a common framework. As mentioned above, the first aim of this paper

1 The interpretation of the signs in these characterizations is discussed in Moyes [28] for social welfare analysis and in
Eeckhoudt, Rey and Schlesinger [16] for decisions under multidimensional risk by referring to risk aversion, prudence
and temperance.

2 For developments of the needs approach, see Fleurbaey, Hagneré and Trannoy [20] and Shorrocks [35].
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is to provide such an integration for bivariate distributions. To do this, we need to derive results
both for the continuous case and for the case of a discrete distribution of needs. This is because
many welfare attributes we can think of have continuous distributions, while typically needs
distributions are discrete. Furthermore, we do not assume that the marginal distributions for the
compensated variable are fixed and we assume that this variable has cardinal significance.

In typical welfare comparisons with the first approach, marginal utilities are generally as-
sumed to be: (1) identical across agents with respect to each attribute and (2) non-negative and
non-increasing. However, these assumptions do not generally suffice to generate criteria with
high discriminatory power. As a response to this issue, we introduce new assumptions based on
compensation principles.

Recent contributions in distributive justice, surveyed in Roemer [31] and Fleurbaey [19], put
forward ethical grounds for compensating for lower levels of certain attributes.3 A frequent claim
in the literature is that welfare differences are acceptable if they are due to attributes for which
agents can be held responsible. In contrast, individuals should be compensated for a deficiency
in other attributes. The debate about how to specify these two sets of attributes is far from closed
(Dworkin [14]). Dworkin proposed to include preferences in the former category and resources
(including inner resources like innate ability) in the latter. Atkinson and Bourguignon [5, p. 46],
who allude to the possibility of compensation, seem to endorse Dworkin’s position: “Differences
in innate abilities, needs or handicaps would seem to require some kind of compensation, but not
differences in effort, resulting from differences in tastes or preferences.”

Our second contribution lies in the application of compensation principles through the as-
sumption that at least one attribute can be used to make direct compensating transfers between
individuals. For example, in the case where income and health are the only two attributes, income
is the compensating variable and cash transfers could be applied in order to compensate one in-
dividual for a bad health status. Clearly, current income may have the same compensating role in
many situations when other attributes are seen as being the compensated variables (e.g., past in-
come, previous generation’s income, health, education, family size and so on). This perspective
justifies treating attributes asymmetrically, thus allowing us to extend the set of the normative
conditions that are imposed and thereby potentially improving the discriminatory power of the
dominance criteria that are used.

We introduce two compensation assumptions. First, compensation is good for social welfare.
Second, compensation should be focused on those who are handicapped or needy and are in the
lower tail of the income distribution.

We derive two sufficient conditions for a distribution of attributes to dominate another under
these assumptions. First, for discrete realizations of the compensated attribute, the distributions
of the compensated variable have to satisfy an absolute poverty gap test. The income poverty
gap is cumulated for all individuals with income lower than some poverty line and compensating
variable lower than a given threshold. The cumulated poverty gap thus obtained must be lower for
the dominating distribution than for the dominated one, and this must be satisfied for any level of
the poverty line and of the threshold. Second, the distribution of the compensated variable has to
satisfy the GL test. Thus, to achieve dominance in the income-health example, that is, in order to
improve social welfare by moving from joint-distribution A to joint-distribution B, it is sufficient
that: (1) the income distribution from A dominates the income distribution from B in terms of

3 Schokkaert and Devooght [32] review empirical results suggesting that the notion of compensation for ‘uncontrollable
factors’ find some echo from many respondents in several countries.
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the poverty gap test and (2) the health distribution from A GL-dominates the health distribution
from B.

This result provides a simple (sufficient) test for a social welfare improvement in multidimen-
sional settings. It is also attractive on two additional grounds. First, it is in line with the typical
criterion obtained in needs analysis. Second, it corresponds to dominance for utility functions
that have intuitive ethical meaning.

Our contribution may also be placed in the context of the recent literature on multidimensional
stochastic orders. Starting with our class and dropping our second compensation assumption, we
obtain a less discriminatory class, which corresponds to the ‘increasing directionally concave’
functions of degree 2 (denoted by IDIC2), studied by Denuit and Mesfioui [13].4 By drop-
ping instead the assumption that the marginal utility of the compensating variable is decreasing,
we obtain the class considered by Bazen and Moyes [7]. Our class appears to be the next in
the sequence of more discriminatory classes for which the conditions of stochastic dominance
were unknown. The fact that no complete results are available for IDIC2 in the highly techni-
cal literature on stochastic orders illustrates the difficulty of deriving necessary and sufficient
stochastic dominance characterization in the bivariate case. This justifies looking for sufficient
partial derivative conditions when necessary and sufficient conditions cannot be readily found.

To sum up, we provide two contributions to the existing literature on welfare and inequal-
ity measurement: First, for bivariate distributions, we integrate the multidimensional dominance
approach with the needs approach by dropping the assumptions of discrete values and fixed
marginal distributions for the compensated variable, and by assuming that it has a cardinal mean-
ing. Second, we explore the implications of adopting a compensation perspective in defining
admissible signs for the partial derivatives of the utility functions. By considering that transfers
in a given attribute can compensate for deficiency in another, we move away from requiring the
‘symmetric’ treatment of attributes, and in particular from assuming symmetric signs for partial
derivatives.

The paper is organized as follows. The next section presents the setting and compares our class
with those studied in the literature. Section 3 derives our sufficient conditions. Section 4 presents
conditions in terms of inverse stochastic dominance. We discuss the introduction of additional
transfer sensitivity conditions in Section 5 before presenting our conclusions in Section 6. The
proofs of the propositions appear in Appendix A.

2. The setting

We consider the bivariate distribution of a variable X = (X1,X2), where subscript 1 is used
for the compensating attribute and 2 for the compensated attribute. We assume that the support
of X is the rectangle [0, a1] × [0, a2] = A1 × A2, where a1 and a2 are in R+. This assumption
encompasses most variables used in empirical work. Note that it implies that each variable has
a cardinal meaning, which may be not satisfied in some contexts. F(x1, x2) denotes the corre-
sponding joint cumulative distribution function, F1(x1) and F2(x2) the respective marginal cdfs
of X1 and X2 and F 2

1 is the cumulative distribution function of X1 conditional on X2. Since
in practice F1 is generally the distribution of incomes, typically considered as continuously dis-
tributed in economics, we assume that F1 and any conditional distribution F 2

1 of income may be
any non-negative, strictly increasing and continuous functions with range [0,1]. F2 can be any

4 See also Denuit, Lefèvre and Mesfioui [12] and Denuit, Eeckhoudt, Tsetlin and Walker [11].
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non-negative, non-decreasing and right-continuous function with range [0,1]. This allows us to
deal with the case where the distribution of the compensated variable is a step function, as would
be the case if this variable is discrete. For any (x1, x2) ∈ A1 × A2:

F(x1, x2) =
∫

[0,x2]
F 2

1 (x1|X2 = t) dF2(t). (1)

Let U(x1, x2) be the utility function, which is assumed to be twice continuously differentiable
with respect to x1 and x2. The partial derivatives of U with respect with each variable are de-
noted with subscripts and are calculated in the usual manner. Our approach is to assume that the
differentiability of U is independent of the actual support of the distribution F , i.e. the possible
values of X1 and X2. This assumption mostly matters for X2 since we consider the possibility
that the distribution of the compensated variable is discrete, for example, if X2 is household size
or a discrete measure of health status. This could be interpreted as a model for an unobserved
latent continuous variable X̃2 for X2. For the latent model, with a continuous distribution of X̃2,
the utility U(x1, x̃2) is differentiable as usual with respect to any realized level x̃2 of X̃2. The
only additional assumption here is that U(x1, x̃2) = U(x1, x2) when x̃2 = x2, i.e. for the pos-
sible discrete realizations of X2. In the family size example, X2 may stand for the number of
children in the family whereas X̃2 may represent the unobserved proportion of days in the year
that children spend in the family. In case of divorced parents, this latent variable may be consid-
ered as continuous. The use of a latent model enables us to provide a convenient mathematical
translation of intuitive normative conditions in the form of signs of derivatives of U .

The social welfare function associated with F is assumed to be additively separable and can
be written as

WF :=
∫

A1×A2

U(x1, x2) dF (x1, x2).

Using the decomposition in (1), we obtain

WF =
∫
A2

[∫
A1

U(x1, x2) dF 2
1 (x1|X2 = x2)

]
dF2(x2), (2)

where the marginal distribution of X2 appears explicitly. The expression in brackets in (2) is the
social welfare of the subpopulation of individuals having in common the same level of attribute 2.
Thus, total social welfare is the sum over x2 of the welfare levels of these subpopulations. This
expression for social welfare generalizes that of [4, Expression 12.3, p. 353] in which F2 was
assumed to be discrete and F 2

1 continuous.
Consider the inner integral in expression (2). U(x1, x2) is a differentiable function over A1,

while F 2
1 is a strictly increasing, continuous function over A1. Thus, neither function has a dis-

continuity point on A1. Consequently, the classical formula of integration by parts applies. When
integrating with respect to X2, the classical formula also applies because the assumptions made
about the utility function preclude situations where U and F 2

1 have a common point of disconti-
nuity (see, for instance, Billingsley [8, Theorem 18.4, p. 240]).5 Thus, these assumptions allow

5 The theorem says: Let F and G be two non-decreasing, right-continuous functions on an interval [a, b]. If F and G

have no common points of discontinuity in (a, b], then the classical formula of integration by parts applies.
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us to treat in a unified way both the case of a discrete and continuous distribution of the compen-
sated variable.6

The change in social welfare between any two distributions F and F ∗ is given by

�WU := WF − WF ∗ =
∫

A1×A2

U(x1, x2) d�F(x1, x2),

where �F denotes F − F ∗.
As typically done in the social welfare literature, we define social welfare dominance as una-

nimity over a family of social welfare functions defined by a given set of utility functions.

Definition. F dominates F ∗ for a family U of utility functions if and only if �WU � 0 for all
utility functions U in U . This is denoted by FDU F ∗.

2.1. Our main class

We start with the set U 2 of increasing utility functions that satisfy the following signs for the
partial derivatives:

U 2 = {U1,U2 � 0,U11 � 0,U22 � 0,U12 � 0,U121 � 0}.7 (3)

Non-decreasingness and concavity with respect to the compensating variable do not need to
be justified. More care is required with the signs of the own first and second partial derivatives
with respect to the compensated variable. When this is a “good” measured cardinally, such as a
scale of good health, it seems natural to assume that utility levels are enhanced by better health
and to introduce some concern for health inequality. On the other hand, when one wishes to
consider needs described by a second variable, they entail a marginal disutility which violates
the assumptions required for U 2. However, it is straightforward to define a corresponding good
as equal to the deviation of the needs variable with respect to its upper bound a2. Including
this good in the utility function delivers the right signs of the first partial derivatives for the
class U 2. In addition, U22 � 0 means that the disutility of the needs increases at a decreasing rate.
Alternatively, one may want to consider situations in which the marginal burden of an additional
child is increasing.

The two remaining signs (U12 � 0, U121 � 0) can be justified either by resorting to normative
arguments that a social planner may adopt or by relying on traditional welfare analysis where so-
cial welfare is expressed as a sum of individual utility functions. We provide a general argument
based on compensation principles for the first interpretation and illustrate the second by means
of two examples.

We capture the idea that compensation is good for social welfare by imposing a negative sign
on the cross-derivative of the utility function with respect to the compensating and compensated
variables. In other words, the marginal utility of income is assumed to be non-increasing in the

6 These assumptions do not cover the case where the utility is only defined for the actual support of the variables. In
that case, common points of discontinuity may arise and correction terms have to be introduced when integrating by
parts. Some of the problems identified by Fishburn and Lavalle [17] on unidimensional grids can then emerge.

7 The class U 1 will be introduced later in the text.
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level of the compensated variable. For instance, the healthier an individual is, the lower are her
claims to income redistribution, other things being equal.

Moreover, applying compensation seems all the more appropriate given that handicapped or
needy people often belong to the lower tail of the income distribution. Rich persons who are
ill may be thought to deserve less compensation than poor sick persons. We incorporate such
considerations through a second compensation assumption which involves the asymmetric treat-
ment of attributes.8 Namely, we assume that the reduction in marginal utility of income with the
level of the compensated variable is non-increasing in the agent’s income. In this case, the gap in
marginal utilities of income between a rich healthy and a rich ill person is not larger than between
a poor healthy and a poor sick person.

A reader familiar with the literature will recognize that these assumptions are akin to those
made by AB2 in a context where the compensated variable is discrete. In other words, our anal-
ysis introduces AB2 assumptions into the AB1 framework. To the best of our knowledge, such
an approach has not been pursued so far.

We now discuss two examples which illustrate (1) the negativity of the second-order partial
cross-derivatives and (2) the other signs of the partial derivatives, including that of U121, as rea-
sonable requirements for the social welfare evaluation explicitly described as a sum of individual
utilities corresponding to different family sizes.

Example 1 (Household size). The second attribute is the deviation of household size n from
some maximal benchmark n, i.e., x2 = n − n, while the first attribute is household income, y.
Here, n − n can be seen as representing the degree of satisfaction of household needs. We now
examine the conditions for a household utility function U(x1, x2) to belong to U 2, where family
size is treated as a continuous numerical variable for convenience. This corresponds to conditions
ensuring that, with a slight abuse of notation, the function U(y,n) satisfies: Uy � 0, Uyy � 0,
Un � 0, Unn � 0, Uyn � 0 and Uyny � 0.

One popular way of dealing with needs expressed in terms of household size is to specify an
equivalence scale function, e(n). Then, social welfare is equal to the sum, over the population,
of the utility levels of equivalent incomes. These equivalent incomes are defined as y

e(n)
. In this

setting, Ebert [15] proposed U(y,n) = e(n)v(
y

e(n)
) with e′(n) � 0. Assuming v′ � 0 and v′′ � 0,

this specification ensures that Uy � 0, Uyy � 0 and Uyn � 0.
Imposing Uyny � 0 requires that the elasticity of v′′ with respect to equivalent income have

to be greater than 1 in absolute terms. For example, a function which is isoelastic with respect to
income, v(x) = 1

1−β
x1−β , with 0 � β < 1, satisfies this condition. Un = e′(n)(v(

y
e(n)

))(1 − ε),

where ε = v′( y
e(n)

)

v(
y

e(n)
)

y
e(n)

is the elasticity of v with respect to equivalent income. Assuming that ei-

ther v is negative and ε � 1, or v is positive and ε � 1, produces the required sign: an additional

family member is a bad. Finally, Unn = e′′(n)v(
y

e(n)
)(1 − ε) + (e′(n))2y2

(e(n))3 v′′( y
e(n)

). A linear equiv-
alence scale ensures that this derivative is negative. Another favorable case is that of an isoelastic
utility v(x) and e(n) = nθ with 0 < θ � 1, as in Banks and Johnson [6]. Then, Unn � 0 if and
only if θβ � 1, which is ensured by the assumptions made about β and θ .

8 Trannoy [37] describes elementary transformations leading to such a restriction on the utility function. Muller and
Trannoy [30] discuss in detail how the signs of cross-partial derivatives are introduced in the literature, sometimes on the
grounds of correlation-increasing majorization.
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Finally, in this specific example of an equivalence scale, Uyynn = (−β)y−β−1(θβ)(θβ −
1)nθβ−2. Then, if θβ � 1, the sign of Unnyy is the opposite of what is assumed in the second
class considered by AB1. In this case, the example is in the set U 2 but not in the smaller set
U AB12 (see Table 1 below). Thus, this example provides support for considering the set U 2 with-
out making the further assumptions that lead to U AB12 .

Example 2 (Indirect household utility). The equivalence scale is a kind of reduced form and one
may prefer a more structural framework with which to represent budget sharing among household
members. Bourguignon [9] investigated the properties of the household indirect utility function
for the unitary model of households with public goods. In this model, each individual has the
same continuous, increasing and strictly concave utility function V defined on two attributes: the
private consumption level x and a within-household public good of consumption level g. To sim-
plify, we assume that each household of size n behaves as a utilitarian society and that all prices
it faces are unity.9 Household income y is allocated according to the following decision rule:
maxx,g nV (x, g) subject to nx + g = y, where each person in the family gets x. The correspond-
ing first-order condition is: n(Vx − nVg) = 0, the solution of which is x∗, the optimal private
consumption. The indirect utility function can be calculated by substituting the demand func-
tions x(y,n) and g(y,n) into the direct utility function: U(y,n) = nV (x(y,n), y − nx(y,n)).10

As in the first example, family size is a bad; i.e., Un = V − nx∗Vg � 0. We now establish the set
of properties which ensure the same signs for the partial derivative as in Example 1.

We first make three assumptions: (a) The private good is normal, x∗
y � 0, which, using the

strict quasi-concavity of V , requires that −Vxg +nVgg � 0. It turns out that this condition implies
that x∗

n � 0 as well.
(b) The public good is normal. We then deduce that 1 −nx∗

y � 0 from fully differentiating the
budget constraint with respect to y.

(c) Private consumption and the public good are substitutes (Vxg � 0).
Using the envelope theorem, we obtain Uy = nVg � 0 and Uyy = n(Vxgx

∗
y + Vgg(1 −

nx∗
y )) � 0. We now deal with the conditions on Unn and Uyn. We have

Unn = −x∗(2 + ηn)Vg − nx∗x∗
nVxg + n

(
x∗)2

(1 + ηn)Vgg,

where ηn = nx∗
n

x∗ is the elasticity of the individual private consumption with respect to family size.
We also have

Uyn = Vg + x∗ηnVxg − nVggx
∗(1 + ηn).

If in addition, we assume (d) ηn > −1, then Unn � 0 and Uyn � 0. Therefore, provided the
proportional increase in individual consumption is smaller than the proportional reduction in
household size, a reasonable conjecture, we obtain all the required signs for the first-order and
second-order partial derivatives.

9 The same model holds if one only assumes that households allocate goods efficiently. For the problem at hand, it is
simpler to consider that individuals (with identical utility functions) are treated symmetrically.
10 Note that the indirect utility is here denoted by U , while the direct utility is denoted by V . This is in accordance with
the use of U in the social welfare objective.
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Table 1
Classes of relevant utility functions for the bivariate case.

Acronym Authors 1st degree 2nd degree 3rd degree 4th degree

U AB11 AB11 U1,U2 � 0 U12 � 0
U GM Gravel and Moyes U1,U2 � 0 U11,U12 � 0
U IDIC2 IDIC2 U1,U2 � 0 U11,U22,U12 � 0
U 1 Bazen and Moyes U1,U2 � 0 U11,U12 � 0 U121 � 0
U 2 Our main class U1,U2 � 0 U11,U22,U12 � 0 U121 � 0
U AB12 AB12 U1,U2 � 0 U11,U22,U12 � 0 U121,U212 � 0 U1122 � 0

Finally, we investigate the conditions under which we can obtain the required sign for Uyny .
In the simple case in which all other third-order derivatives can be neglected, we obtain

Uyyn = Vxgx
∗
y + Vgg

(
1 − nx∗

y

) + nVxgx
∗
yn − nVgg

(
x∗
y + nx∗

yn

)
= (

x∗
y + nx∗

yn

)
(Vxg − nVgg) + Vgg

(
1 − nx∗

y

)
.

If we further assume that (e) gyn � 0, that is, when households become richer, consumption
of the public good increases with family size (e.g., as income increases, housing and durable
goods become more important and food consumption less important), then x∗

y + nx∗
yn � 0. As-

sumptions (a), (b) and (e) allow us to conclude that Uyyn � 0. Therefore, the signs of the partial
derivatives corresponding to U 2 can be recovered for natural specifications of the preferences in
this example.

2.2. Overview of the classes of utility functions

It is useful to compare our class of utility functions to those which have been studied in the
economic literature and the stochastic order literature for the bivariate case. Table 1 presents the
classes of utility functions that are relevant for the discussion in this paper. These classes are
defined by the signs of their partial derivatives. We examine different classes beginning from the
least discriminating.

We start with the first class of functions in Atkinson and Bourguignon [3], which is close
to those leading to first-degree stochastic dominance since concavity with respect to income is
not even required. We finish with their second class, which can be viewed as a maximalist class
with required signs of partial derivatives up to the fourth order. In the latter case, together with
U12 = U21 � 0, the sign condition for U212 is in line with the idea that the second attribute can
also be used to compensate for a deficiency in the first attribute to both the first and second
degrees. Note that two elements of the so-called ‘increasing concave order’ in the literature on
multidimensional stochastic orders correspond to the two classes considered by Atkinson and
Bourguignon [3].11

While U AB11 or U AB12 treats the two attributes symmetrically, Gravel and Moyes [23] and
Bazen and Moyes [7] define two intermediate classes that require marginal utility to be decreas-
ing with respect to the compensated variable only. In fact, when the compensated variable has
solely an ordinal signification, it is meaningless to impose the monotonicity of its marginal utility.

11 See for example Denuit, Lefèvre and Mesfioui [12], Denuit and Mesfioui [13] and Denuit, Eeckhoudt, Tsetlin and
Walker [11].
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Fig. 1. The relevant classes of utility functions for bivariate dominance.

In that case, another type of asymmetric treatment of variables is introduced. Thus, the Gravel–
Moyes and Bazen–Moyes criteria can be viewed as intermediate cases between AB11 and our
class U 2.

It is also possible to compare U 2 with the so-called increasing directionally concave order
of degree s (denoted by IDICs) class.12 For the bivariate case, the (s)-increasing directionally

concave order is defined by the dominance of all functions g such that (−1)k1+k2+1 ∂k1+k2

∂x
k1
1 x

k2
2

g � 0,

for all non-negative integers k1 + k2 such that 1 � k1 + k2 � s, where s is a non-negative integer
greater than or equal to 2. The increasing directionally concave order of degree 2 corresponds to
dominance for functions U such that U1,U2 � 0 and U11,U22,U12 � 0.

Fig. 1 illustrates how the different classes of utility functions can be ranked, starting from
the broadest class AB11 up to the most discriminating class AB12. It illustrates the two paths
followed by the approaches in the literature. However, this figure is not completely helpful for
finding candidates for necessary and sufficient conditions for U 2. In particular, while neces-
sary and sufficient conditions are known for the Bazen and Moyes class, this is not the case for
IDIC2.13

The classes of utility functions in the needs approach correspond to those in the multidimen-
sional approach with an additional restriction. The marginal distribution of needs is considered
as fixed in the original needs approach. Consequently, it is not necessary to define the signs of the
own partial derivatives with respect to the compensated attribute. With this restriction in mind,
the signs of the partial derivatives for the Bourguignon [9] class corresponds to the Gravel–Moyes
class. Moreover, the Atkinson and Bourguignon [4] class is included in the Bazen–Moyes class
and in our class U 2.

3. Stochastic dominance results

In this section, we state and discuss our general results in terms of second-degree stochas-
tic dominance. It is convenient to define the two standard univariate second-degree stochastic

12 See Denuit, Lefèvre and Mesfioui [12] and Denuit and Mesfioui [13].
13 Note that Lemma 4.1 in combination with Proposition 3.1. in Denuit and Mesfioui [13] does not result in tractable
conditions in the bivariate case. See more on this in footnote 15.
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dominance terms14

Hi(xi) =
xi∫

0

Fi(s) ds, i = 1,2,

the bivariate term

H(x1, x2) =
x1∫

0

x2∫
0

F(s, t) ds dt,

and the term where we integrate the distribution function only with respect to the compensating
variable

H1(x1;x2) =
x1∫

0

F(s, x2) ds.

Since H1(x1;x2) = ∫ x2
0

∫ x1
0 F 2

1 (s|X2 = x2) ds dF2(x2), it can also be seen as arising from cumu-
lating the conditional distribution F 2

1 . For the sake of completeness, we recall the results obtained
by AB1.

Theorem 1. (See Atkinson and Bourguignon [3].) Let F and F ∗ be two cdfs.

(a) FDU AB11 F
∗ if and only if ∀x1 ∈ A1, ∀x2 ∈ A2, �F(x1, x2) � 0.

(b) FDU AB12 F
∗ if and only if ∀x1 ∈ A1, ∀x2 ∈ A2, �H1(x1) � 0, �H2(x2) � 0 and

�H(x1, x2) � 0.

In the case of the set of utility functions U 2, we obtain the following result.

Proposition 1. Let F and F ∗ be two cdfs. If

∀x2 ∈ A2, �H2(x2) � 0 (B)

and

∀x2 ∈ A2, ∀x1 ∈ A1, �H1(x1;x2) � 0, (C)

then FDU 2F ∗.

Condition (B) is the typical second-degree stochastic dominance expression applied to the
second attribute. Condition (C) involves a mixed second-degree stochastic dominance term,
which is the cdf of the joint distribution integrated once with respect to the first attribute. In
particular, Condition (C) implies second-degree stochastic dominance for the first attribute since
H1(x1;a2) = H1(x1).

14 The letter H indicates that F is integrated once with respect to a variable. The index variable is denoted by a subscript.
The semi-colon in H1(x1;x2) indicates that the variable on the left-hand side of the semi-colon is used for integration
one more time than the variable on the right-hand side. A comma between the two variables indicates that they are used
for the same number of integrations.
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A more intuitive condition than Condition (C) can be derived from the equivalent poverty
ordering. Foster and Shorrocks [21] showed that unidimensional stochastic dominance tests are
equivalent to unidimensional poverty orderings. Introducing an absolute poverty line for the sec-
ond attribute, z2, we can define the absolute poverty gap term for this attribute:

P2(z2) =
∫

[0,z2]
(z2 − x2) dF (x2),

which can be used to generate an equivalent condition to Condition (B) in terms of absolute
poverty gaps. Moreover, introducing the absolute poverty line, z1, in the first attribute, and defin-
ing

P1(z1;x2) =
∫

[0,x2]

∫
[0,z1]

(z1 − x1) dF (x1, t2),

we obtain the absolute poverty gap of the compensating variable for the population below a level
z1 of this variable and below a level x2 of the compensated variable. This expression turns out
to be equivalent to the mixed second-degree stochastic dominance term in Condition (C). Using
these two poverty gaps allows us to rewrite Proposition 1 in a fashion more convenient for applied
work.

Corollary 1. Let F and F ∗ be two cdfs.[
�P2(z2) � 0, ∀z2 ∈ A2 and �P1(z1;x2) � 0, ∀z1 ∈ A1 and ∀x2 ∈ A2

]
⇒ FDU 2F

∗.

The following remark may be useful to economists dealing with attributes which reduce wel-
fare, as in the two examples.

Remark. Consider the companion class of U 2, U 2∗ = {U1 � 0,U2 � 0,U11 � 0,U22 � 0,

U12 � 0,U121 � 0}, where the second attribute is a bad with a disutility which is increasing
and concave. Then, it is sufficient to change Condition (B) to �H2(x2) � 0 in Proposition 1 to
obtain a sufficient dominance result for the U 2∗ class. When the distribution of needs is invariant
between the two situations being compared, this condition vanishes.

We attempted to find fully necessary conditions using the counter-example approach intro-
duced by Fishburn and Vickson [18], that is, by specifying a utility function U in U 2 such that
�WU < 0 when either Condition (B) or (C) is violated. Condition (B) is necessary for dom-
inance as a consequence of standard results for unidimensional stochastic dominance. In fact,
setting U1 = 0, one can consider the set of all utility functions in U 2 that are twice differentiable,
increasing and concave in the second argument. Condition (C) evaluated at the upper bound a2
is also necessary since it is the second-order stochastic dominance condition applied to the first
attribute.

The difficulty with the proof of necessity arises when dealing with Condition (C). Our ap-
proach was to try to construct a counter-example by supposing that �H1(x1;x2) > 0 in a small
neighborhood of a given point (x∗

1 , x∗
2 ). Then, a function U is characterized by its higher par-

tial derivative U121 specified as a constant in this neighborhood and zero elsewhere. Finally,
U is integrated out successively within and outside the neighborhood. An appropriate choice of
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neighborhood and of the constant implies that �WU = −�H1(x
∗
1 ;x∗

2 ), which was intended to
provide the counter-example. Unfortunately, this constructive approach is hampered by the ne-
cessity of globally satisfying all the restrictions in U 2. It turns out that these restrictions cannot
be imposed simultaneously over the whole two-dimensional domain as they are geometrically
incompatible.

As mentioned earlier, the traditional approach to necessary conditions is based on counter-
examples, which are generator functions of the continuous convex sets of utilities (or ‘test
functions’ as in Athey [1]). Minimal and maximal sets of generators are studied in Müller [29].
Our class is clearly convex since convex combinations of functions preserve the signs of the
derivatives involved. However, it is quite possible that no such generator system exists for an
infinite dimensional set of functions like U 2 and, furthermore, if one exists, it may not be straight-
forward to find it. In particular, functions proposed in the literature for other classes which we
have considered are not relevant in our case since they do not satisfy the conditions to be in U 2.
For example, certain functions in the closure of the convex combinations of the popular counter-
example functions U∗(x1, x2) = −max{0, z1 − x1}I [0, z2], where z1 ∈ [0, a1] and z2 ∈ [0, a2]
and I is the indicator function and U∗∗(x1, x2) = −max{0, z2 − x2}, where s2 ∈ [0, a2], do
not satisfy U22 � 0. This is unfortunate since using these functions would yield the stochastic
dominance conditions in Proposition 1. The difficulty in finding generator functions is further
emphasized by the fact that they are not yet available in the technical literature for the class
IDIC2, a symmetric class close to our class U 2.15

These technical difficulties do not arise with the set U 1 considered by Moyes [28] and Bazen
and Moyes [7]. In this case, the marginal utility with respect to the compensated variable is not
required to be decreasing, which relaxes a crucial restriction on the counter-example restriction.
Dominance in U 1 corresponds to dominance for the functions U∗∗∗(x1, x2) = −I [0, s2], where
s2 ∈ [0, a2], and U∗(x1, x2). In this case, replacing Condition (B) in our results with �F2(x2) � 0
(the first-order unidimensional stochastic dominance condition) yields a necessary and sufficient
condition for U 1.

4. Inverse stochastic dominance

Expressing conditions of stochastic dominance in terms of Lorenz curves is an attractive ap-
proach to inequality measurement, as Atkinson showed more than thirty years ago (Atkinson [2]).
It is also straightforward with our standard expression for second-order stochastic dominance (B)
in Proposition 1. We now translate Condition (C) into an inverse stochastic dominance expres-
sion.

We first return to the formal definition of the Generalized Lorenz curve. The right-inverse
of a positive non-decreasing and right-continuous function F(x) is defined by: F−1(p) =
supF(x)�p x, with p in [0,1]. The Generalized Lorenz (GL) curve of the marginal cdfs Fi for

i = 1,2, denoted by LFi
(p) is defined on [0,1] by LFi

(p) = ∫ p

0 F−1
i (t) dt . In the cases in which

15 Generators are provided by Denuit and Mesfioui [13] in Lemma 4.1 for all orders of dominance IDICs of index s � n,
where n is the number of variables considered. Our case of interest is s = n = 2. However, this lemma cannot be used for
s = n = 2 because the Taylor expansion from which the generators are obtained collapses. Technically, this is because the
generators of IDIC2 are characterized as the intersection of the generators of (1,1)-increasing concave, (2,0)-increasing
concave and (0,2)-increasing concave classes (for the definitions of these classes, see Denuit and Mesfioui [13]). But the
Taylor expansions collapse for the last two classes. This point has been confirmed in a correspondence with Professor
Michel Denuit.
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the first attribute is income, the Generalized Lorenz curve of F1 is based on the cumulative total
income received by the poorest proportion p of the population. In this representation, individuals
are ranked according to their income.

We now define a related concept: the Projected Generalized Lorenz (PGL) curve for a given
value of x2. For each value x2 in X2, the projected distribution function of x1, Fx2 , is defined on
X1 by the equation Fx2(x1) = F(x1, x2). It is obtained by a projection of the joint distribution
F(x1, x2) onto the Cartesian plane going through x2. This value may be viewed as a threshold
below which the compensation is deemed as favorable from a normative point of view. For a
given x2, Fx2(x1) is at most equal to F(a1, x2) = F2(x2). Due to our hypotheses concerning F1
and F 2

1 , Fx2 is continuous and strictly increasing.
The Projected Generalized Lorenz curve for a given value of x2 is the Generalized Lorenz

curve for the projected distribution function for x2. The corresponding right inverse is defined by
setting, ∀p ∈ [0,F2(x2)], F−1

x2
(p) = supFx2 (x1)�p x1.

Definition. The Projected Generalized Lorenz (PGL) curve on [0,F2(x2)], for a given value
of x2, is defined by CFx2

(p) = ∫ p

0 F−1
x2

(t) dt .

In the cases in which the first attribute is income, the quantity CFx2
(p) is the cumulative

income received by the poorest proportion p of the population having at most a level x2 of
the compensated variable. The Projected Generalized Lorenz curve CFx2

(p) is related by a scale
factor 1/F2(x2) to the Generalized Conditional Lorenz curve for x1, defined using the conditional
distribution of x1.16 With this definition, we obtain the following result.

Proposition 2. Let F and F ∗ be two cdfs.

∀x2 ∈ A2,
[
�H1(x1;x2) � 0, ∀x1 ∈ A1

⇒ CFx2
(p) � CF ∗

x2
(p), ∀p ∈ [

0,min
(
F2(x2),F

∗
2 (x2)

)]]
(L1)

∀x2 ∈ A2 such that �F2(x2) � 0,[
�H1(x1;x2) � 0, ∀x1 ∈ A1 ⇔ CFx2

(p) � CF ∗
x2

(p), ∀p ∈ [
0,F2(x2)

]]
(L2)

Moreover, the above inequalities between the PGL curves in (L1) are strict at all points x1 for
which the corresponding projected distribution functions do not intersect.

In words, the first statement says that a necessary condition for Condition (C) of Proposition 1
to hold is that the Projected Generalized Lorenz curve of the dominant distribution must be above
that of the dominated distribution. The information lies in the domain condition. For a given
value of the compensated variable x2, this statement only has to be true for all proportions of the
population up to the minimum of F2(x2) and F ∗

2 (x2). In the first statement, it may be the case
that the distribution of the compensated variable for the dominant distribution does not dominate
at the first order that for the dominated distribution. If we assume that this first-order stochastic

16 Indeed, for a given value of x2 and for any x1 ∈ A1, the conditional cdf is defined by Gx2 (x1) = Fx2 (x1)

F2(x2)
=

F1(x1|X2 � x2). For any p ∈ [0,1], its inverse G−1
x2 (p) = supGx2 (x1)�p x1. Thus, the GL curve corresponding to

the subpopulation for which the level of the compensated variable is at most x2 is defined by LFx2
(p) = ∫ p

0 G−1
x2 (t) dt ,

∀p ∈ [0,1]. Dividing by F2(x2) introduces the same change in the analysis as in inequality analysis when dividing by
the mean and using Lorenz curves instead of GL curves.
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dominance holds, then we get the equivalence between stochastic dominance Condition (C) and
the inverse stochastic dominance condition in terms of the Projected Generalized Lorenz curves.
This is the substance of statement (L2).

In statements (L1) and (L2), PGL dominance is imposed for various ranges of the proportion p.
These ranges are non-decreasing in x2. As a consequence, (L1) or (L2) dominance conditions are
not very demanding for levels of x2 lying in the lower tail. In contrast, they become increasingly
demanding, as is the case with the Lorenz dominance condition, when the level of x2 approaches
the upper bound of its distribution support.

In statement (L1), the dominance of the PGL curve of the compensating variable for any value
of the compensated variable is necessary over a domain that is determined by the intersection of
the supports of the two compared PGL curves. It turns out that the PGL test is sufficient only
when the distribution of the compensated variable for F dominates its counterpart for F ∗ to the
first order, which is in particular the case when the marginal distribution of the compensated vari-
able is fixed. As a consequence, for the family of utility functions U 1 considered by Moyes [28]
and Bazen and Moyes [7], we obtain a complete characterization result based on the PGL curve.

Corollary 2. Let F and F ∗ be two cdfs. FDU 1F ∗ if and only if �F2(x2) � 0, ∀x2 ∈ A2 and
CFx2

(p) � CF ∗
x2

(p), ∀p ∈ [0,F2(x2)], ∀x2 ∈ A2.

In situations where a first-order stochastic dominance relation does not hold in comparing
the distributions of the compensated variable, there exist values of x2 where the proportion of
individuals having at most this level is higher in F than in F ∗. Condition (B) in Proposition 1
implies that this cannot occur for the smallest level of x2. It can also be observed that

∀x2 ∈ A2 such that F ∗
2 (x2) � F2(x2),[

�H1(x1;x2) � 0, ∀x1 ∈ [
0,F−1

2

(
F ∗

2 (x2)
)]]

⇔ [
CFx2

(p) � CF ∗
x2

(p), ∀p ∈ [
0,F ∗

2 (x2)
]]

.

So, roughly speaking, checking the PGL condition is necessary and sufficient at the bottom of
the joint distribution, but not at the top.

In the discrete case, the PGL tests in (L1) or (L2) can be performed sequentially. One starts
by considering the observations corresponding to the lowest level of the compensated variable;
then, one adds to this sample the observations corresponding to the second lowest level and so
on.

For the sake of illustration, consider the case of a discrete realization for the compensated
variable. Specifically, let F2 and F ∗

2 be two step functions with jumps at x21, . . . , x2k for F2 (re-
spectively x∗

21, . . . , x
∗
2l for F ∗

2 ). Statement (L1) indicates that no condition on �F2 is required for
any level of x2 strictly below max(x21, x

∗
21). Indeed, the range of p considered in statement (L1)

is [0,min(F2(x2),F
∗
2 (x2))] and in this case min(F2(x2),F

∗
2 (x2)) = 0. The first comparison in

the sequence starts at x2 = max(x21, x
∗
21). The PGL curves are compared for the subpopulation

of individuals with a compensated attribute lower than or equal to a given level x2. This is illus-
trated in Fig. 2. The PGL curve of the dominating distribution must be above the PGL curve of the
dominated distribution for the poorest proportions of population according to the compensated
variable up to the minimum of F2(x2) and F ∗

2 (x2).
If the first sequential comparison yields a positive dominance result, then the PGL test is

repeated for the next level of x2 strictly larger than max(x21, x
∗
21) in the common support of

F2(x2) and F ∗(x2). If the result is again positive, an additional iteration is carried out using the
2
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Fig. 2. Comparison of Projected Generalized Lorenz Curves: The solid line (resp. the dotted line) is the PGL curve of
the F (resp. F ∗) distribution.

next level of x2 and so on, up to the last sequential comparison, which occurs for the maximum
level in the two distributions F2 and F ∗

2 . In this case, the comparison is tantamount to performing
the classic GL test, since at this level of x2, F2 and F ∗

2 both take the value 1, the range of p is
[0,1], F(x1, x2) = F(x1) and F ∗(x1, x2) = F ∗(x1).

The relationship between the PGL criterion and the SGL criterion pioneered by AB2 is sim-
pler in the case of identical marginal distributions of the compensated variable. In this case, the
PGL curve corresponds to the ‘conditional GL curve’, i.e., the GL curve of the conditional dis-
tribution of x1 given x2. Thus, in the case of identical marginal distributions of the compensated
variable, our criterion boils down to the SGL criterion and we are back to the needs approach
considered by AB2. In this particular setting, we have thus extended their results to the case of a
continuous distribution of needs, as stated in the following corollary.

Corollary 3. Let F and F ∗ be two joint cdfs such that F2 ≡ F ∗
2 . Then, FDU AB2F ∗ if and only if

LFx2
(p) � LFx2

(p), ∀p ∈ [0,1], ∀x2 ∈ A2.

5. Introducing transfer sensitivity

There has been some interest in the literature in the non-negativity of the own third-order
partial derivatives for income (U111 � 0). This condition is related to the transfer sensitivity
property, which implies that the social planner is more sensitive to income transfers performed at
the bottom of the income distribution than at the top.17 One may also be interested in imposing
transfer sensitivity for the compensated variable (U222 � 0) rather than for the compensating
variable. In that case, we obtain a refinement of our sufficient conditions for the following set of
utility functions:

U 3 = {U1,U2 � 0,U11 � 0,U22 � 0,U12 � 0,U222 � 0,U121 � 0}.

17 See Shorrocks and Foster [36] for a general study of transfer sensitivity and Lambert and Ramos [27] for an applica-
tion to the needs approach.
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We define the third-order stochastic dominance term for the marginal distributions: Li(xi) =∫ xi

0 Hi(s) ds, i = 1,2. For this case, we obtain the following proposition.18

Proposition 3. Let F and F ∗ be two cdfs. If �H2(a2) � 0, �H1(x1;x2) � 0, ∀x2 ∈ A2, ∀x1 ∈ A1
and �L2(x2) � 0, ∀x2 ∈ A2, then FDU 3F ∗.

We can therefore achieve slightly more discriminating dominance conditions by incorporat-
ing the assumption of transfer sensitivity with respect to the compensated variable. The last
condition in Proposition 3 is the unidimensional condition of third-order stochastic dominance
applied to the compensated variable. It is supplemented by a terminal condition of second-order
stochastic dominance that the mean of the compensated variable is larger for the dominant dis-
tribution than for the dominated distribution. By successively referring to the three families U 1,
U 2, U 3, which correspond respectively to first-, second- and third-order analysis of the compen-
sated variable, we can then generate increasingly less demanding criteria and, thus, fewer partial
quasi-orderings.

6. Conclusion

Using compensation principles, we have proposed an integrated treatment of the needs and of
the multidimensional stochastic dominance approaches in the bivariate case. We have derived a
stochastic dominance condition which generalizes the Sequential Generalized Lorenz criterion
to a continuous distribution of needs.

We conclude with some general observations concerning the differences between the two
approaches from theoretical and empirical perspectives. The multidimensional approach requires
information about signs of marginal utilities of the compensated attributes and of their slopes.
However, one may feel uncomfortable with restricting such signs for certain types of need. The
example of family size is an illustration of this point. Should we treat a child as a cost or as a
“good”? The examples presented in Section 2 are based on the assumption that a child is viewed
as a cost, given a fixed household budget. However, one may instead prefer not to make such
assumptions about demographic family structure on the grounds that they would not achieve
unanimity among social scientists. In this case, adhering to the needs approach alone seems
sensible. In contrast, the multidimensional approach could be preferred when (1) it is clear that
each attribute should contribute directly to individual welfare, and (2) when one wants to assess
the impact of a policy measure on all dimensions of welfare.

Various extensions of our analysis are possible. In particular, empirical studies of actual
compensation mechanisms operating in society could aid in the specification of restrictions on
utility functions to be used for stochastic dominance results. From a theoretical standpoint, un-
derstanding the profound reasons for not achieving necessary and sufficient conditions in the
multidimensional setting for every normatively meaningful class of utility functions is still an
avenue for further research. This would help social scientists to identify the limitations in the use
of desirable normative properties on utility functions that arise from technical obstacles that are
encountered for achieving necessity conditions. An open question is if these limitations also hold
when considering discrete needs levels.

18 Fishburn and Lavalle [17] pointed out that in the case of a variable that only takes discrete values, the third-order
dominance condition is more stringent than the one in Proposition 3.
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As to extensions to a larger number of attributes, an example of this may be found in Muller
and Trannoy [30], where a generalization of the Human Development Index based on income,
education and health indicators is considered.

Appendix A

A.1. Proof of Proposition 1

Let

WF =
∫
A2

[∫
A1

U(x1, x2) dF 2
1 (x1|X2 = x2)

]
dF2(x2). (4)

Integrating the inner integral by parts gives∫
A1

U(x1, x2) dF 2
1 (x1|X2 = x2) = U(a1, x2)F

2
1 (a1|X2 = x2) − U(0, x2)F

2
1 (0|X2 = x2)

−
∫
A1

U1(x1, x2)F
2
1 (x1|X2 = x2) dx1.

Noting that cdfs vanish at zero and F 2
1 (a1|X2 = x2) = 1 since F 2

1 is a cdf, integrating the last
term of the RHS of the above expression by parts once again with respect to x1 and substituting
in (4), we get

WF =
∫
A2

U(a1, x2) dF2(x2) −
∫
A2

[
U1(a1, x2)

∫
A1

F 2
1 (x1|X2 = x2) dx1

]
dF2(x2)

+
∫
A2

[∫
A1

U11(x1, x2)

( x1∫
0

F 2
1 (s|X2 = x2) ds

)
dx1

]
dF2(x2). (5)

Integrating the first term of the RHS of the above expression by parts gives∫
A2

U(a1, x2) dF2(x2) = U(a1, a2)F (a1, a2) −
∫
A2

U2(a1, x2)F (a1, x2) dx2. (6)

Integrating the second term of the RHS of (5) by parts with respect to x2 gives

−U1(a1, a2)

[∫
A2

[∫
A1

F 2
1 (x1|X2 = x2) dx1

]
dF2(x2)

]

+
∫
A2

U12(a1, x2)

[ x2∫
0

[∫
A1

F 2
1 (x1|X = t) dx1

]
dF2(t)

]
dx2. (7)

Using Fubini’s theorem,
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[ x2∫
0

[∫
A1

F 2
1 (x1|X2 = t) dx1

]
dF2(t)

]
=

∫
A1

[ x2∫
0

F 2
1 (x1|X2 = t) dF2(t)

]
dx1

=
∫
A1

F(x1, x2) dx1.

Expression (7) now reduces to:

= −U1(a1, a2)

∫
A1

F1(x1) dx1 +
∫
A2

U12(a1, x2)

[∫
A1

F(x1, x2) dx1

]
dx2. (8)

Similarly, integrating the third term of the RHS of (5) by parts with respect to x2, we obtain

∫
A1

U11(x1, a2)

[∫
A2

[ x1∫
0

F 2
1 (s|X2 = x2) ds

]
dF2(x2)

]
dx1

−
∫
A2

∫
A1

U112(x1, x2)

[ x2∫
0

[ x1∫
0

F 2
1 (s|X2 = t) ds

]
dF2(t)

]
dx1 dx2,

which reduces to

=
∫
A1

U11(x1, a2)

[ x1∫
0

F1(s) ds

]
dx1 −

∫
A2

∫
A1

U112(x1, x2)

[∫
A1

F(s, x2) ds

]
dx1 dx2. (9)

Similar expressions to (6), (8) and (9) can be derived for WF ∗. Using �F(a1, a2) = 0 because
F(a1, a2) = 1 for any F , the difference in welfare is:

�WU =
∫

A1×A2

U(x1, x2)�dF(x1, x2)

= −
∫
A2

U2(a1, x2)�F2(x2) dx2 − U1(a1, a2)

∫
A1

�F1(x1) dx1

+
∫
A2

U12(a1, x2)

[∫
A1

�F(x1, x2) dx1

]
dx2

+
∫
A1

U11(x1, a2)

[ x1∫
0

�F(s, a2) ds

]
dx1

−
∫
A1

∫
A2

U112(x1, x2)

[∫
A1

�F(s, x2) ds

]
dx1 dx2.

Finally, integrating the first term in the RHS term above by parts and evaluating the other terms
yields
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�WU = −U2(a1, a2)�H2(a2)

+
∫
A2

U22(a1, x2)�H2(x2) dx2 − U1(a1, a2)�H1(a1)

+
∫
A2

U12(a1, x2)�H1(a1;x2) dx2

+
∫
A1

U11(x1, a2)�H1(x1) dx1 −
∫
A1

∫
A2

U112(x1, x2)�H1(x1;x2) dx1 dx2.

Since Condition (C) implies �H1(x1) � 0, ∀x1 ∈ A1, the conclusion follows from examining the
signs of each term.

A.2. Proof of Proposition 2

A.2.1. Proof of (L1)
We consider two cases. In both cases, we choose a fixed value of x2 in A2.

Case 1. Assume that x2 ∈ A2 is such that F ∗
2 (x2) � F2(x2). We prove that �H1(x1;x2) � 0,

∀x1 ∈ A1 ⇒ CFx2
(p) � CF ∗

x2
(p), ∀p ∈ [0,F ∗

2 (x2)].

We use Young’s inequality (see Genet [22, Theorem 1, p. 195]), which reduces in this case
to an equality since we apply it to the corresponding bounds. Starting with the definition of
H1(x1;x2), we obtain

x1∫
0

Fx2(s) ds = x1Fx2(x1) −
Fx2 (x1)∫

0

F−1
x2

(t) dt,

or with q = Fx2(x1) ∈ [0,F2(x2)]:

H1(x1;x2) = F−1
x2

(q)q −
q∫

0

F−1
x2

(t) dt.

Using a similar expression for H ∗
1 (x1;x2) with q∗ = F ∗

x2
(x1) ∈ [0,F ∗

2 (x2)], we have

�H1(x1;x2) = qF−1
x2

(q) − q∗F ∗−1
x2

(
q∗) −

[ q∫
0

F−1
x2

(t) dt −
q∗∫

0

F ∗−1
x2

(t) dt

]
. (10)

Since F ∗
2 (x2) � F2(x2), we have F ∗

x2
(x1) = F ∗(x1, x2) � F ∗(a1, x2) = F ∗

2 (x2) � F2(x2).

We consider three sub-cases, according to whether q � q∗. If q > q∗, then

�H1(x1;x2) = qF−1
x2

(q) − q∗F ∗−1
x2

(
q∗) −

q∫
∗

F−1
x2

(t) dt − [
CFx2

(
q∗) − CF ∗

x2

(
q∗)].
q
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Using F−1
x2

(q) = F ∗−1
x2

(q∗) = x1,

�H1(x1;x2) =
[
F−1

x2
(q)

(
q − q∗) −

q∫
q∗

F−1
x2

(t) dt

]
− [

CFx2

(
q∗) − CF ∗

x2

(
q∗)].

Applying the mean-value theorem for integrals, the term in brackets is always strictly positive
if q > q∗ because Fx2 is continuous and strictly increasing. Therefore, �H1(x1;x2) � 0 ⇒
CFx2

(F ∗
x2

(x1)) − CF ∗
x2

(F ∗
x2

(x1)) > 0. Since F ∗
x2

(x1) ∈ [0,F ∗
2 (x2)], �H1(x1;x2) � 0, ∀x1 ∈ A1

implies CFx2
(p) > CF ∗

x2
(p), ∀p ∈ [0,F ∗

2 (x2)]. The proof is similar for q∗ > q . Finally, if q = q∗,
the terms in brackets vanish and �H1(x1;x2) � 0 implies CFx2

(p) � CF ∗
x2

(p). This situation cor-
responds to the intersection points x1 of the projected distribution functions. The impossibility
of considering quantiles up to 1 prevents us from proposing a straightforward reciprocal result as
opposed to what is possible in the unidimensional case.

Case 2. Assume x2 ∈ A2 is such that F2(x2) < F ∗
2 (x2). We prove that �H1(x1;x2) � 0, ∀x1 ∈

A1 ⇒ CFx2
(p) � CF ∗

x2
(p), ∀p ∈ [0,F2(x2)].

We start again with (10). By assumption, �H1(x1;x2) � 0 for all x1. In particular, this
inequality holds for all x1 ∈ A1 such that F ∗

x2
(x1) � F2(x2). In this case, the last part of

the necessity of the proof of Case 1 from (10) remains the same. Therefore, we can de-
duce that �H1(x1;x2) � 0 ⇒ CFx2

(F ∗
x2

(x1)) − CF ∗
x2

(F ∗
x2

(x1)) � 0. Since F ∗
x2

(x1) ∈ [0,F2(x2)],
�H1(x1;x2) � 0, ∀x1 ∈ A1 implies CFx2

(p) � CF ∗
x2

(p), ∀p ∈ [0,F2(x2)]. Statement (L1) fol-
lows with CFx2

(p) > CF ∗
x2

(p) at all points x1 for which the corresponding projected distribution
functions do not intersect.

A.2.2. Proof of (L2)
Assume x2 ∈ A2 is such that F2(x2) � F ∗

2 (x2).
In view of (L1), it suffices to prove that CFx2

(p) � CF ∗
x2

(p), ∀p ∈ [0,F2(x2)] implies
�H1(x1;x2) � 0, ∀x1 ∈ A1.

Suppose that there exists q ∈ [0,F2(x2)] such that CFx2
(q) � CF ∗

x2
(q). Then, there exists

x1 ∈ A1 such that x1 = F−1
x2

(q) and there exists q∗ = F ∗
x2

(x1). Starting from Eq. (10) (which
remains valid) and using F2(x2) � F ∗

2 (x2), which implies that q = F(x1, x2) � F(a1, x2) �
F ∗

2 (x2), one gets in the case q∗ > q:

�H1(x1;x2) = qF−1
x2

(q) − q∗F ∗−1
x2

(
q∗) +

q∗∫
q

F ∗−1
x2

(t) dt

−
[ q∫

0

F−1
x2

(t) dt −
q∫

0

F ∗−1
x2

(t) dt

]
,

or using F−1
x2

(q) = F ∗−1
x2

(q∗):

�H1(x1;x2) =
[ q∗∫

F ∗−1
x2

(t) dt − F ∗−1
x2

(
q∗)(q∗ − q

)] − [
CFx2

(q) − CF ∗
x2

(q)
]
.

q
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Applying the mean-value theorem for integrals, the first term in brackets is strictly neg-
ative since F ∗

x2
is continuous and strictly increasing. Then, CFx2

(q) − CF ∗
x2

(q) � 0 implies

�H1(F
−1
x2

(q);x2) < 0. Since the range of F−1
x2

(p) is A1 for p ∈ [0,F2(x2)], CFx2
(p) � CF ∗

x2
(p),

∀p ∈ [0,F2(x2)] implies �H1(x1;x2) < 0, ∀x1 ∈ A1. The derivation is similar for the case
q < q∗. In the case where q = q∗, the first term in brackets vanishes and CFx2

(p) − CF ∗
x2

(p) � 0,
for all p ∈ [0,F2(x2)] implies �H1(x1;x2) � 0.

A.3. Proof of Proposition 3

Starting from the final expression for �WU in the proof of Proposition 1 and integrating with
respect to x2 the second term on the RHS term by parts, with U22(a1, x2) continuous in x2, we
obtain

�WU = −U2(a1, a2)�H2(a2) + U22(a1, a2)�L2(a2) −
∫
A2

U222(a1, x2)�L2(x2) dx2

− U1(a1, a2)�H1(a1) +
∫
A2

U12(a1, x2)�H1(a1;x2) dx2

+
∫
A1

U11(x1, a2)�H1(x1) dx1 −
∫
A1

∫
A2

U112(x1, x2)�H1(x1;x2) dx1 dx2.

The conclusion follows.
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