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Summary We present the asymptotic properties of double-stage quantile regression
estimators with random regressors, where the first stage is based on quantile regressions with
the same quantile as in the second stage, which ensures robustness of the estimation procedure.
We derive invariance properties with respect to the reformulation of the dependent variable. We
propose a consistent estimator of the variance–covariance matrix of the new estimator. Finally,
we investigate finite sample properties of this estimator by using Monte Carlo simulations.
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1. INTRODUCTION

Quantile regressions are often used not only for wage and living standard analyses1 but also for
studies of firm data and financial data. Quantile regressions produce robust estimates, particularly
for misspecification errors related to non-normality and to the presence of outliers. They also help
the researcher to focus his/her study on specific parts of the conditional distribution.

The researchers often study relations in which some right-hand-side variables are endogenous.
For example, socioeconomic variables, such as the education of the individual, appearing in wage
equations may be endogenous. Other sources of endogeneity such as measurement errors are
common.

When there are endogenous variables, the estimator of the parameter of interest is generally
inconsistent. A well-known solution is the two-stage least squares (2SLS) estimation method in
which one replaces the endogenous explanatory variables with their predictions from ancillary
equations based on other exogenous variables. However, if researchers are interested in a specific
part of the distribution of the structural variable, other than the mean, or if they want robust
estimates, the 2SLS estimation method is not appropriate. Amemiya (1982) and Powell (1983)

1See Buchinsky (1995) and Machado and Mata (2001).
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dealt with the case of the double-stage least-absolute deviations (DSLAD) with fixed regressors,
which allow researchers to focus on the median of the distribution of interest. In this paper, we
extend the works of Amemiya and Powell by using quantile regressions and random exogenous
variables. We use the same quantile estimation in two steps and the resulting estimator of the
structural parameter is termed ‘double-stage quantile regression (DSQR) estimator’.

Other researchers have treated some endogeneity problems in quantile regressions. Chen and
Portnoy (1996) study two-stage quantile regressions with symmetric error terms where the first-
stage estimators are trimmed least-squares estimators and LAD estimators. Other authors do not
rely on the simple two-stage parametric approach favoured by many empirical economists. Kemp
(1999) and Sakata (2001) studied least absolute error difference (LAED) estimators for estimating
a single equation from a simultaneous equation model.2 Abadie et al. (2002) design a quantile
treatment effects estimator, which is the solution to a convex programming problem with first-
step non-parametric estimation of a nuisance function.3 MaCurdy and Timmins (2000) propose
an estimator for ARMA models adapted to the quantile regression framework.4

We do not follow these various approaches in this paper and we rather focus on two-stage
estimation procedures familiar to empirical economists. Some empirical economists (Arias et al.
2001; Garcia et al. 2001). adopt a direct approach with a first stage of LS estimators. However,
this approach may be delicate for the general type of problem that we consider since using LS
estimation in the first step combined with Amemiya’s reformulation of the dependent variable may
produce an asymptotic bias (as will be shown in Appendix A). It can also destroy the robustness
properties of the quantile regressions. We will focus on the case when the first stage is composed
of quantile regressions for which the quantile is the same as for the second stage.

This paper is organised as follows. Section 2 discusses the model and the assumptions. At
this occasion, we derive invariance properties with respect to the reformulation of the dependent
variable. In Section 3, we prove the asymptotic normality of the DSQR and discuss the estimation
of the asymptotic variance–covariance matrix. We emphasise that the same quantile should be
used to estimate the reduced and structural forms in order to avoid asymptotic biases for all values
of q. We present simulation results in Section 4. Finally, Section 5 concludes. The proofs are
presented in Appendix B.

2. THE MODEL

We are interested in the structural parameter, α0 = (γ ′
0, β ′

0)′, in an equation in the following
matrix form for a sample of T observations:

y = Yγ0 + X1β0 + u, (1)

where [y, Y] is a T × (G + 1) matrix of endogenous variables, X1 is T × K1 matrix of exogenous
variables and u is a T × 1 vector. The matrix X2 contains K 2(=K − K 1) exogenous variables
absent from (1). In this situation the endogeneity of Y in (1) may cause that Q θ (u|Y ) 
= Q θ (u),

2These estimators are not based on first-stage estimates of the reduced-form equations for the right-hand-side endogenous
variables. Instead, they use encompassed optimisation procedures, in which explicit concentration of formulae is
impossible. The LAED optimisation is not a linear programming problem and a grid search must be used for the
concentration.

3They deal with the case of binary treatment related to sample selectivity by modifying the typical objective function of
the quantile regression problem with non-parametrically estimated weights.

4It is based on the smoothing of conditional quantile conditions that are incorporated in a GMM framework.
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where Qθ (·) is the quantile function of order θ , and Q θ (·|Y ) is the quantile function of order
θ conditional on Y . This non-equality can be used as a definition of endogeneity for quantile
regressions. Moreover, we assume that Y has the following reduced-form representation:

Y = X�0 + V , (2)

where X = [X 1, X 2] is a T × K matrix, �0 is a K × G matrix of unknown parameters and V is
a T × G matrix of unknown error terms. Then, the reduced-form representation of y is

y = Xπ0 + v, (3)

where π0 = [�0, ( IK1
0

)]α0 = H (�0)α0 and v = u + V γ 0.
Define ρθ : R → R+ for given θ ∈ (0, 1) as ρθ (z) = zψθ (z), where ψθ (z) = θ − 1[z≤0] and 1[.]

is the Kronecker index. As a natural extension of Amemiya (1982) and Powell (1983), we define
the double-stage quantile regression estimator (DSQR(θ , q)) α̂ = (γ̂ ′, β̂ ′)′ of α0 as a solution to
the following minimisation programme:

min
α

ST (α, π̂, �̂, q, θ ) =
T∑

t=1

ρθ (qyt + (1 − q)x ′
t π̂ − x ′

t H (�̂)α), (4)

where yt and x′
t are the tth elements in y and X, respectively, q is a positive constant chosen in

advance by the researcher, and π̂ and �̂ j (the jth column of �̂) are the first-stage estimators
obtained by

min
π

T∑
t=1

ρθ (yt − x ′
tπ ) and min

� j

T∑
t=1

ρθ (Y jt − x ′
t� j ), ( j = 1, . . . , G), (5)

where π and �j are K × 1 vectors and Yjt is the (j, t)th element of Y . The reformulation of the
dependent variable as qyt + (1 − q)x ′

t π̂ has been introduced by Amemiya as a generalisation of
a property of 2SLS, and an attempt to improve efficiency. Although the ability of choosing the
value of q should yield estimators depending on this value, we show in the next proposition that
there exist cases where the DSQR(θ , q) is invariant with respect to the value of q.

Proposition 1 Let δ(θ, y, X ) denote the quantile regression estimator associated with
quantile θ , dependent variable y and matrix of right-hand-side variables X. Moreover, let
α̃ = δ(θ, y, X H (�̂)). Then, we have

(i) δ(θ, qy + (1 − q)X H (�̂)α̃, X H (�̂)) = α̃.

(ii) If K 2 = G and H (�̂) is of full column rank, then the DSQR(θ , q) is given by α̂ = H (�̂)−1π̂ .

The first result (i) is an invariance property of α̂ that is also verified by least square estimators.
Although it does not correspond to the composite dependent variable that we will consider later
on, this result implies that iterating the estimation by changing the dependent variable in that way
is useless, since the initial DSQR(θ , 1) is obtained. The second property (ii) isolates the case of
exact identification, where the distribution of the estimator, and in fact the estimator itself, do not
depend on q. The argument and the direct calculus here are analogous to that used for indirect
least-squares (ILS) estimator. Result (ii) shows how easily the DSQR(θ , q) can be obtained when
the exact identification condition is satisfied. In that case, no numerical minimisation of (4) is
necessary and this is precisely in the same way in which ILS is obtained. Our theoretical results
for the DSQR(θ , q) developed in the subsequent sections are general enough to include not only
the exactly identified case (K 2 = G), but also the over-identified case (K 2 > G).

C© Royal Economic Society 2004
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The following conditions will be useful to obtain the asymptotic representation of the
DSQR(θ , q), which we discuss in Appendix A, and the asymptotic normality of the DSQR(θ , q).

Assumption 1 The sequence {(v t, Vt, xt)} is independent and identically distributed (i.i.d.) where
ut and Vt are the tth elements in u and V , respectively.

Assumption 2 (i) E(||xt||3) < ∞.
(ii) H(�0) is of full column rank.
(iii) The conditional densities f (·|x) and gj(·|x), respectively, for v t and V jt, are Lipschitz

continuous for all x. Moreover, Q0 = E{ f (0|xt)xtx′
t} and Qj = E{gj(0|xt)xtx′

t} are finite and
positive definite.

(iv) E{ψθ (v t )|xt} = 0 and E{ψθ (Vjt)|xt} = 0 ( j = 1, . . ., G).

Assumption 2(i) is needed to generalise the stochastic equicontinuity result in Powell (1983).
Assumptions 2(ii) and 2(iii) are standard in the literature. Assumption 2(iv) is a generalisation
of Powell’s assumption and states that zero is the quantile of order θ of v t and Vjt conditionally
on xt. Assumption 2(iv) normalises the intercept on the θ th quantile of the distributions of v t

and Vjt. The occurrence of a bias, when different quantiles are used for the two stages or when
least-square estimators are used for the first stage, is discussed in Appendix A. For q 
= 1, distinct
methods for first and second stages generally imply incompatible restrictions on error terms. We
are now ready to study the asymptotic normality of the DSQR(θ , q).

3. ASYMPTOTIC NORMALITY AND COVARIANCE MATRIX

The asymptotic normality of the DSQR(θ , q) is based on its asymptotic representation derived in
Appendix A. It is easy to see from this representation in (15) that the DSQR(θ , q) is asymptotically
robust because its influence function is a linear combination of bounded functions. The robustness
would be lost if non-robust first-stage estimators were used.

Proposition 2 Under Assumptions 1 and 2, T 1/2(α̂ − α0)
d→ N (0, D�D′), where D =

Q−1
zz H (�0)′[I , − Q0 Q−1

1 γ 01, . . . , − Q0 Q−1
G γ 0G], Qzz = H (�0)′ Q0 H (�0) and � = E(� ⊗

xtx′
t ), where � is the matrix of general term ψθ (Wit)ψθ (Wjt) with W 1t = v t , Wit = V i−1,t for

2 ≤ i ≤ G + 1.

Note that although the definition of α̂ depends on q, its asymptotic law does not. In that case
the first-stage estimator π̂ intervenes in the calculation of α̂, but not in its asymptotic distribution.
However, π̂ can still be used for a consistent estimator of the asymptotic covariance matrix. In
order to conduct inference based on α̂, it is necessary to have consistent estimators of D and �.
We now develop such estimators by using the plug-in principle.

Assumption 3 (i) There exist positive constants f 0 and g0j such that f (·|x) ≤ f 0 and gj(·|x) ≤
g0 j for all x.

(ii) There exists a stochastic sequence {ĉ jT } and a non-stochastic sequence {cjT} for j = 0,
1, . . . , G such that we have ĉ jT /c jT

p→ 1, cjT = op(1) and c−1
jT = op(T 1/2).

We defined our covariance estimators as follows:

D̂ = Q̂−1
zz H (�̂)′

[
I , −Q̂0 Q̂−1

1 γ̂1, . . . ,−Q̂0 Q̂−1
G γ̂G

]
,
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where Q̂zz = H (�̂)′ Q̂0 H (�̂), Q̂0 = (2ĉ0T T )−1 ∑T
t=1 1[−ĉ0T ≤v̂t ≤ĉ0T ]xt x ′

t , Q̂ j = (2ĉ jT T )−1 ∑T
t=1

1[−ĉ jT ≤V̂ j t ≤ĉ jT ]xt x ′
t , v̂t = yt − x ′

t π̂ and V̂ j t = Y jt − x ′
t�̂( j = 1, . . . , G);

�̂ = T −1
T∑

t=1

�̂t ⊗ xt x
′
t ,

where �̂t = Ŵ ⊗ xt x ′
t and Ŵ is the matrix of general term ψθ (Ŵit )ψθ (Ŵ jt ) with Ŵ1t = v̂t , Ŵit =

V̂i−1,t for 2 ≤ i ≤ G + 1. Then, our proposed covariance matrix estimator is D̂�̂D̂′.

Proposition 3 Under Assumptions 1–3, D̂
p→ D and �̂

p→ �.

To the best of our knowledge that is the first time that a proof of convergence of the variance–
covariance matrix of the two-stage quantile estimators is given and even with non-random
regressors. We now complete these asymptotic results with small sample simulations.

4. MONTE CARLO SIMULATIONS

In this section, we conduct simulation experiments to investigate the finite-sample properties of
the DSQR(θ , q),5 notably in terms of the endogeneity and robustness problems.

The data-generating process used in the simulations is described in Appendix C, which shows
that the equation of interest is over-identified and the parameter values are γ 0 = 0.5 and β ′

0 =
(1, 0.2). We generate the error terms by using three alternative distributions: the standard normal
N(0,1), the Student-t with 3 degrees of freedom t(3) and the Lognormal LN(0,1). The exogenous
variables xt are also drawn in a normal distribution at each replication. The number of replications
is 1,000. For each replication, we estimate the parameter values γ 0 and β 0 and the deviation
of the estimates from the true values. Then, we compute the sample mean and sample standard
deviation (when useful, the sample median and the sample interquartile range) over the 1,000
replications.

The performance of the one-stage quantile regression estimator for the different distributions
is displayed in Table 1 for the N(0,1) case. The results for the other distributions are qualitatively
similar and are not reported. This estimator exhibits a systematic bias in finite samples, which
does not disappear as the sample size increases from 50 to 300.

Q1
The results for the DSQR(θ , q) with N(0,1) are provided in Tables 2 and 3. We select two

illustrative values (0.5 and 1) for q. As shown in Proposition 1, when the system is exactly
identified, this dependence on q does not exist, which is confirmed by our simulations of this
case (not shown). Whereas the DSQR(θ , q) does not depend on q asymptotically, it does in
finite samples, but as we increase the sample size to 300, the results for different q’s become
quantitatively similar. The means of the DSQR(θ , q) estimates, (γ̂ − γ0, β̂ − β0), are much closer
to zero than the means of the one-step quantile estimator over all values of θ , although the
corresponding standard deviations are generally greater.

For other distributions too, the changes in the value of q do not substantially modify the
results. Hence, for these two distributions, t(3) and LN(0,1), we report only the case q = 1. The

5See also Ribeiro (1998) for small sample simulations of two-stage LAD estimation with a first step of LS or LAD
estimators.

C© Royal Economic Society 2004
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Table 1. Simulation means and standard deviations of one-step quantile estimator: N(0,1).

θ 0.05 0.25 0.50 0.75 0.95

T = 50 γ̃ Mean −0.41 −0.40 −0.40 −0.40 −0.41

Std 0.28 0.18 0.16 0.17 0.28

β̃0 Mean 0.90 0.96 1.05 1.14 1.26

Std 1.23 0.62 0.45 0.39 0.42

β̃1 Mean 0.09 0.09 0.09 0.09 0.08

Std 0.34 0.21 0.19 0.21 0.33

T = 300 γ̃ Mean −0.41 −0.41 −0.41 −0.41 −0.41

Std 0.11 0.07 0.06 0.07 0.11

β̃0 Mean 0.84 0.97 1.06 1.17 1.30

Std 0.47 0.23 0.18 0.16 0.17

β̃1 Mean 0.09 0.09 0.09 0.09 0.09

Std 0.13 0.09 0.08 0.09 0.13

Table 2. Simulation means and standard deviations of DSQR(θ , q = 0.5) : N(0,1).

θ 0.05 0.25 0.50 0.75 0.95

T = 50 γ̃ Mean −0.01 −0.01 −0.01 −0.00 −0.01

Std 0.71 0.45 0.33 0.37 0.72

β̃0 Mean −0.04 −0.06 −0.01 −0.00 −0.10

Std 1.96 1.17 0.87 0.99 1.85

β̃1 Mean 0.01 0.00 0.00 0.00 0.01

Std 0.45 0.25 0.22 0.25 0.43

T = 300 γ̃ Mean 0.01 0.00 0.01 0.00 0.00

Std 0.21 0.13 0.12 0.13 0.20

β̃0 Mean −0.03 −0.01 −0.02 −0.01 −0.01

Std 0.58 0.35 0.33 0.36 0.54

β̃1 Mean 0.00 0.00 0.00 0.00 0.00

Std 0.15 0.09 0.09 0.10 0.14

results with t(3), which are given in Table 4 show similar features. However, the fatter tails of
the errors entail accuracy losses for both one-stage and two-stage estimators. The results with
lognormal error terms, shown in Table 5, differ in that both estimators are severely biased for
large quantiles (for θ = 0.95). The bias of the DSQR(θ , q) diminishes when the sample size rises
to T = 300. In a simulation available upon request, the bias disappears for a sufficiently large
number of observations, as opposed to the case of the one-stage estimator. Also, the performance
of the DSQR(θ , q) for the lognormal case is the best for small quantiles (θ = 0.05), in contrast
with the usual better performance of the DSQR(θ , q) for quantiles around θ = 0.5 and symmetric
distributions. The formula of the diagonal term of the covariance matrix D� D′ suggests us a
conjecture for the occurrence of such effect in large samples, which may extend to small samples
in some cases. Indeed, because of the asymmetric shape of the lognormal distribution, f (0|xt) and

C© Royal Economic Society 2004
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Table 3. Simulation means and standard deviations of DSQR(θ , q = 1) : N(0,1).

θ 0.05 0.25 0.50 0.75 0.95

T = 50 γ̃ Mean −0.01 0.01 0.00 0.00 −0.01

Std 0.75 0.45 0.33 0.39 0.76

β̃0 Mean 0.00 0.04 0.00 −0.01 0.03

Std 2.08 −1.17 0.88 1.04 1.94

β̃1 Mean 0.01 0.00 0.00 0.00 0.01

Std 0.47 0.26 0.22 0.25 0.44

T = 300 γ̃ Mean 0.01 0.01 0.01 0.00 0.00

Std 0.22 0.13 0.12 0.13 0.20

β̃0 Mean −0.02 −0.01 −0.02 −0.01 0.00

Std 0.59 0.36 0.34 0.36 0.55

β̃1 Mean 0.00 0.00 0.00 0.00 0.00

Std 0.15 0.09 0.09 0.10 0.15

Table 4. Simulation means and standard deviations of DSQR(θ , q = 1) : t(3).

θ 0.05 0.25 0.50 0.75 0.95

T = 50 γ̃ Mean −0.31 −0.01 0.00 −0.05 −0.26

Std 1.49 0.49 0.38 0.57 1.29

β̃0 Mean 0.61 0.01 0.01 0.16 0.92

Std 4.16 1.32 1.01 1.54 3.41

β̃1 Mean 0.09 −0.01 0.00 0.01 0.05

Std 1.11 0.33 0.26 0.35 1.04

T = 300 γ̃ Mean −0.03 0.00 −0.01 0.00 −0.05

Std 0.57 0.17 0.13 0.17 0.86

β̃0 Mean 0.06 0.00 0.03 0.01 0.18

Std 1.48 0.45 0.36 0.45 2.74

β̃1 Mean 0.01 −0.01 0.00 −0.01 0.01

Std 0.35 0.12 0.10 0.12 0.38

gj(0|xt) for large values of θ when the θ th quantile is zero can be very close to zero. This inflates
the roles of some terms in the diagonal terms of D� D′, which may lead to a large variance for
the DSQR(θ , q) and cause the large finite-sample bias for θ = 0.95 and LN(0,1).

For all the types of error terms, the one-stage estimator is severely biased. In contrast, the
DSQR(θ , q) has good finite sample properties, although a too small sample size or too extreme
quantiles (θ = 0.05, 0.95) may degrade its performance. Sample medians and sample interquartile
ranges have been calculated to supplement sample means and sample standard deviations,
respectively. We have not found any significant difference between the robust measures and
the usual measures, except in the case where the error terms are drawn from LN(0,1) and with
large quantiles (θ = 0.95). In that case only, the robust measures are reported in the brackets, next
to their corresponding usual measures in Table 4. The dispersion of the sampling distribution of
the deviations is smaller when robust measures are used.

C© Royal Economic Society 2004
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Table 5. Simulation means and standard deviations of DSQR(θ , q = 1) : LN(0,1).

θ 0.05 0.25 0.50 0.75 0.95

T = 50 γ̃ Mean 0.00 0.00 0.00 0.06 0.47(0.45)

Std 0.07 0.09 0.44 0.41 0.55(0.35)

β̃0 Mean −0.06 −0.05 −0.02 0.05 0.59(0.67)

Std 0.05 0.08 0.15 0.33 1.11(0.71)

β̃1 Mean 0.00 0.00 0.00 −0.01 −0.12(−0.13)

Std 0.05 0.07 0.12 0.23 0.56(0.51)

T = 300 γ̃ Mean 0.00 0.00 0.00 0.00 0.24(0.26)

Std 0.02 0.03 0.06 0.13 0.69(0.33)

β̃0 Mean −0.08 −0.06 −0.03 0.02 0.40(0.44)

Std 0.02 0.03 0.05 0.13 0.86(0.58)

β̃1 Mean 0.00 0.00 0.00 0.00 −0.05(−0.06)

Std 0.01 0.02 0.04 0.10 0.43(0.34)

Table 6. Simulation means and standard deviations of DSQR(θ , q = 1) and DSLS with a single outlier:
N(0,1).

θ 0.05 0.25 0.50 0.75 0.95 DSLS

T = 50 γ̃ Mean −0.01 0.01 0.01 0.01 0.08 0.23

Std 0.77 0.45 0.34 0.40 1.20 1.57

β̃0 Mean 0.00 −0.02 0.01 0.02 0.27 0.26

Std 2.13 1.18 0.91 1.08 3.07 4.02

β̃1 Mean 0.01 0.00 0.00 0.00 −0.01 0.01

Std 0.47 0.26 0.23 0.27 1.10 1.17

T = 300 γ̃ Mean 0.01 0.01 0.01 0.00 0.01 0.04

Std 0.22 0.13 0.12 0.13 0.21 0.25

β̃0 Mean −0.02 −0.01 −0.01 −0.01 0.01 0.05

Std 0.59 0.36 0.34 0.37 0.57 0.65

β̃1 Mean 0.00 0.00 0.00 0.00 0.01 0.01

Std 0.15 0.10 0.09 0.10 0.15 0.19

One of the justifications for using the DSQR(θ , q) is that it is resistant to outliers. To confirm
this property, we conduct a separate Monte Carlo experiment in which we compare the DSQR(θ ,
q) with the 2SLS when one outlier occurs for the dependent variable yt. Following Cowell and
Flachaire (2002), the outlier is the randomly selected observation of yt and multiplied by 15. The
results in the normal error case are reported in Table 6 for the 2SLS, which is invariant to the value
of q, and for the DSQR(θ , 1). Other distributions and the other values of q deliver similar results.
The results show that the DSQR(θ , q) is much more robust to outliers than the 2SLS, which is
still more obvious when medians and interquartiles indicators are used.

C© Royal Economic Society 2004
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5. CONCLUSION

We study in this paper the asymptotic properties, the invariance, the robustness and the
finite sample properties of double-stage quantile regression estimators with first-stage quantile
regressions defined on the same quantile as the second stage. Our results permit valid inferences
in models estimated using quantile regressions with random regressors, in which the possible
endogeneity of some explanatory variables is treated via preliminary predictive quantile
regressions.
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Garcia, J., P. J. Hernandez and A. Lopez-Nicolàs (2001). How wide is the gap? An investigation of gender
wage differences using quantile regression. Empirical Economics 26, 149–67.

Kemp, G. (1999). Least absolute error difference estimation of a single equation from a simultaneous
equations system. Mimeo, University of Essex.

Kim, T. and C. Muller (2000). Two-stage quantile regression. Nottingham University Working Paper.
Kim, T. and C. Muller (2003). Two-stage quantile regression when the first stage is based on quantile

regression. Nottingham University Working Paper.
Koenker, R. and Q. Zhao (1994). L-estimation for linear heteroscedastic models. Journal of Non-parametric

Statistics 3, 223–235.
Koenker, R. and Q. Zhao (1996). Conditional quantile estimation and inference for ARCH models.

Econometric Theory 12, 793–813.

C© Royal Economic Society 2004



ectj˙001 ECTJ-xml.cls March 31, 2004 18:46

10 Tae-Hwan Kim and Christophe Muller

Machado, J. A. F. and J. Mata (2001). Earning functions in Portugal 1982–1994: Evidence from quantile
regressions. Empirical Economics 26, 115–34.

MaCurdy, T. and C. Timmins (2000). Bounding the influence of attrition on intertemporal wage variation in
the NLSY. Mimeo Stanford University.

Pollard, D. (1991). Asymptotics for least absolute deviations regression estimators. Econometric Theory 7,
186–199.

Powell, J. (1983). The asymptotic normality of two-stage least absolute deviations estimators. Econometrica
51, 1569–75.

Ribeiro, E. (1998). Small sample evidence of quantile regression for structural models: Estimation and
testing. Revista de Econometria 18, 215–44.

Sakata, S. (2001). Instrumental variable estimation based on mean absolute deviation. Mimeo University of
Michigan.

A. APPENDIX. ASYMPTOTIC REPRESENTATION

We define an empirical process M
∗
T (ζ ) by

M∗
T (ζ ) = T −1/2

T∑
t=1

xtψθ (qvt − x ′
tζ ) = T −1/2

T∑
t=1

m∗(wt , ζ ),

where ζ is a K × 1 vector, wt = (v t , x ′
t )

′, m
∗
(wt, ζ ) = xtψθ (qvt − x ′

tζ ) and ζ = T −1/2δ∈ RK with the norm
||.||. Let V ∗

T (ζ ) = T −1/2
∑T

t=1[m∗(wt , ζ ) − E{m∗(wt , ζ )}] = M∗
T (ζ ) − E(M∗

T (ζ )). Since the function ψθ is
of bounded variations, Assumptions 1 and 2 are sufficient to apply Theorems 1–3 in Andrews (1994), which
leads to:

sup
||ζ1−ζ2||≤L∗

∣∣∣∣V ∗
T (ζ1) − V ∗

T (ζ2)
∣∣∣∣ = op(1) (A.1)

for any finite and positive scalar L∗. We outline the proof below. In order to apply Theorem 1 in Andrews
(1994), the following two conditions must be verified:

1. m∗(w t, ζ ) satisfies Pollard’s entropy condition with some envelop M̄(wt );
2. For some δ > 2, limT →∞T −1

∑T
t=1 E[{M̄(wt )}δ] < ∞.

Let f 1(w t , ζ ) = xt and f 2(w t , ζ ) = ψθ (qv − x ′
tζ ) so that m∗(w t , ζ ) = f 1(w t , ζ ) f 2(w t , ζ ). Since f 1(·, ζ )

and f 2(·, ζ ) are Type I functions with envelopes ||xt|| and 1, respectively (see Andrews, 1994, for definitions),
m∗(w t, ζ ) satisfies Pollard’s entropy condition with envelope max (1, ||xt||) because it is a product of two
Type I functions (See Theorems 2 and 3 in Andrews, 1994). Hence, (i) is verified. The second condition is
now given by limT →∞T −1

∑T
t=1 E[{M̄(wt )}δ] = E[{max(1, ||xt ||)}δ] which is bounded by Assumption 2(i).

Hence, the result in (A.1) now follows.
For any ζ 1, ζ 2 in RK and L∗(>0) in R, we can find �1, �2 in RK and L(>0) in R such that ζ 1 = T −1/2�1,

ζ 2 = T −1/2�2 and L∗ = T −1/2 L . With these notations, we define the following functions: VT (�) = MT (�)
− E(MT (�)) where MT (�) = T −1/2

∑T
t=1 m(wt , �) and m(w t , �) = xtψθ (qv t − T −1/2x ′

t�). Then, it is
easy to see that the result in (A.1) can be written as

sup
||�1−�2||≤L

||VT (�1) − VT (�2)|| = op(1). (A.2)

By setting �1 = � and �2 = 0 in (A.2), we have

sup
||�||≤L

||MT (�) − MT (0) − {E(MT (�)) − E(MT (0))}|| = op(1). (A.3)
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Using Assumptions 2(i) and 2(iii), it can be shown that E(MT (�)) − E(MT (0)) → − q−1 Q0� where Q0 =
E{ f (0|xt)xtx′

t}. A detailed proof of this result is provided in Kim and Muller (2003). Therefore, by replacing
E(MT (�)) − E(MT (0)) with its limit −q−1Q0�, we obtain the following result:

sup
||�||≤L

∣∣∣∣MT (�) − MT (0) + q−1 Q0�
∣∣∣∣ = op(1). (A.4)

We now show how the result in (A.4) can be used to introduce the first-stage estimators.
Let �̂0 = (q − 1)

√
T (π̂ − π0) + √

T (�̂ − �0)γ0. Then, �̂0 = Op(1) since
√

T (π̂ − π0) = Op(1) and√
T (�̂ − �0) = Op(1), given Assumptions 1 and 2. Hence, from the result in (A.4), we have MT (�̂0) =

MT (0) − q−1 Q0�̂0 + op(1), which in turn implies that

MT (�̂0) = Op(1) (A.5)

since MT (0) = Op(1)6 and q−1 Q0�̂0 = Op(1). Now let

�̂1(δ) = H (�̂)δ + �̂0, (A.6)

where δ∈ RG+K1 . For some finite L 1 > 0, then it is straightforward to show that (A.4) implies that

sup
||δ||≤L1

∣∣∣∣MT (�̂1(δ)) − MT (0) + q−1 Q0�̂1(δ)
∣∣∣∣ = op(1). (A.7)

Next, we define M̃T (δ) = H (�̂)′ MT (�̂1(δ)) and ||H (�̂)||2 = tr (H (�̂)H (�̂)′) = Op(1). Using the fact that
�̂ − �0 = op(1) and the argument between (A.7) and (A.8) in Powell (1983), it is shown that (A.5) and
(A.7) together imply that

sup
||δ||≤L1

∣∣∣∣M̃T (δ) − H (�0)′ MT (�̂0) + q−1 Qzzδ
∣∣∣∣ = op(1), (A.8)

where Qzz = H (�0)′ Q0 H (�0). We now wish to exploit this result with δ̂ = T 1/2(α̂ − α). For this, we need
to show that δ̂ = Op(1). This is done by using Lemma A.4 in Koenker and Zhao (1996), which can be
applied under the following conditions:

(i) −δ′ M̃T (λδ) ≥ −δ′ M̃T (δ) for λ ≥ 1,
(ii) ||H (�0)′ MT (�̂0)|| = Op(1),

(iii) M̃T (δ̂) = op(1), where δ̂ = T 1/2(α̂ − α0),
(iv) Qzz is positive definite.

With these conditions together with q > 0, Lemma A.4 in Koenker and Zhao delivers the desired results:
δ̂ = Op(1) and δ̂ = q Q−1

zz H (�0)′ MT (�̂0) + op(1). We first consider condition (i). As noted in the proof of
Lemma 3.7 in Koenker and Zhao (1994), the following function h(λ) is a convex function:

h(λ) =
T∑

t=1

ρθ

(
qvt − T −1/2x ′

t H (�̂)δλ − T −1/2x ′
t�̂0

)
,

which implies that the gradient of h(λ) given by −δ′ M̃T (λδ) is non-decreasing in λ. Hence, condition (i) is
satisfied. Condition (ii) is simply a consequence of (10). To show the validity of (iii), we note that

T 1/2 M̃T (δ̂) =
[

∂ST

∂α

∣∣∣∣
α=α̂

]
−

6Noting that for q > 0, ψθ (qv t ) = ψθ (v t ), we have MT (0) = T −1/2 ∑T
t=1 xtψθ (vt ), which, under Assumptions 1, 2(i)

and 2(iv), converges in distribution to a normal random variable by the Lindeberg-Levy CLT.
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where [ ∂ST
∂α

|α=α̂]− is op(1) because it is the vector of left-hand-side partial derivatives of the objective function
ST evaluated at the solution α̂. Hence, M̃T (δ̂) = op(1). Finally, the condition (iv) is easily proved by using
Assumption (ii) and the identification condition K 2 ≥ G. Therefore, we have T 1/2(α̂ − α0) = Op(1) and

T 1/2(α̂ − α0) = q Q−1
zz H (�0)′ MT (�̂0) + op(1),

which delivers the preliminary asymptotic representation7 for the DSQR(θ , q):

T 1/2(α̂ − α0) = Q−1
zz H (�0)′

{
T −1/2

T∑
t=1

qxtψθ (vt )

+ (1 − q)Q0T 1/2(π̂ − π0) − Q0T 1/2(�̂ − �0)γ0

}
+ op(1). (A.9)

Substituting the asymptotic representations T 1/2(π̂ − π0) = Q−1
0 T −1/2

∑T
t=1 xtψθ (vt ) + op(1) and

T 1/2(�̂ j − �0 j ) = Q−1
j T −1/2

∑T
t=1 xtψθ (Vjt ) + op(1) into (A.9) shows that the first term involving q cancels

out with the asymptotic representation of T 1/2(π̂ − π0) multiplied by −qQ0. Simplifying gives

T 1/2(α̂ − α0) = T −1/2
T∑

t=1

Q−1
zz H (�0)′xtψθ (vt )

− T −1/2
G∑

i=1

T∑
t=1

Q−1
zz H (�0)′ Q0 Q−1

i γ0i xtψθ (Vit ) + op(1)

= DT −1/2
T∑

t=1

Zt + op(1) (A.10)

where Zt = ψθ (Wt) ⊗ xt, ψθ (Wt) = (ψθ (v t ), ψθ (V 1t ), . . . , ψθ (VGt))′ and D = Q−1
zz H (�0)′[I ,

− Q0 Q−1
1 γ 01, . . . , − Q0 Q−1

G γ 0G]. The expression in (A.10) is a scaled sample mean to which we can
apply a CLT provided that E(Zt) = 0, which is satisfied by Assumption 2(iv). Here, E(Zt) = 0 is satisfied
because the same quantile is used in both stages. Now, we examine what happens when LS estimation
or a different quantile are used in the first stage. We first consider LS estimation. The corresponding
asymptotic representations are T 1/2(π̂LS − π0) = Q−1T −1/2

∑T
t=1 xtvt + op(1) and T 1/2(�̂LS − �0)γ0 =

Q−1T −1/2
∑T

t=1 xt Vtγ0 + op(1), where Q = E(xtx′
t ). Substitution of these expressions into (A.19) gives

T 1/2(α̂ − α0) = DLST −1/2
∑T

t=1 ZLS
t + op(1), where DLS = Q−1

zz H (�0)′[q I , (1 − q)Q0 Q−1, − Q0 Q−1]
and ZLS

t = (x ′
tψθ (v t ), x ′

tv t , x ′
t Vtγ 0)′. But, E(ZLS

t ) 
= 0 because E{ψθ (v t )|xt} = 0 and E{v t |xt} = 0 do
not generally hold simultaneously unless θ = 1/2 and for symmetric distributions. Next, we investigate the
consequence of using different quantiles (θ 1 for the first stage and θ 2 for the second stage). The asymptotic
representations for the first-step estimators are given by T 1/2(π̂ Q − π0) = Q−1

0 T −1/2
∑T

t=1 xtψθ1 (vt ) +
op(1) and T 1/2(�̂Q

j − �0 j ) = Q−1
j T −1/2

∑T
t=1 xtψθ1 (Vjt ) + op(1). Plugging these representations into

(A.9) results in T 1/2(α̂ − α0) = DQ T −1/2
∑T

t=1 Z Q
t + op(1), where DQ = Q−1

zz H (�0)′[q I , (1 − q)I ,
−Q0 Q−1

1 γ 01, . . . , −Q0 Q−1
G γ 0G] and Zt

Q = (x ′
tψθ2 (v t ), x ′

tψθ1 (v t ), x ′
tψθ1 (V 1t ), . . . , x ′

tψθ1 (V Gt))′.Again,
E(ZQ

t ) 
= 0 because E{ψθ1 (v t )|x t} = 0 and E{ψθ2 (v t )|x t} = 0 cannot hold unless θ 1 = θ 2. This issue of
asymptotic bias caused by E(Zt) 
= 0 is analysed in Kim and Muller (2000).

7An alternative approach would have been to work with an empirical process for the objective function itself: ζT (�) =∑T
t=1[ρθ (qvt − T −1/2x ′

t�) − ρθ (qvt )] and to use the method proposed in Pollard (1991).

C© Royal Economic Society 2004



ectj˙001 ECTJ-xml.cls March 31, 2004 18:46

Two-stage quantile regression 13

B. APPENDIX. PROOFS

Proof of Proposition 1: Recalling Theorem 3.2 in Koenker and Bassett (1978), we have δ(θ , λy, X ) =
λδ(θ , y, X ) for any λ > 0 and δ(θ , y + Xγ , X ) = δ(θ , y, X ) + γ , where γ is a parameter of appro-
priate dimension. The above invariance properties imply that δ(θ, qy + (1 − q)X H (�̂)α̃, X H (�̂)) =
δ(θ, qy, X H (�̂)) + (1 − q)α̃ = qδ(θ, y, X H (�̂)) + (1 − q)α̃ = qα̃ + (1 − q)α̃ = α̃. This is the result (i).
If K 2 = G and H (�̂) is of full column rank, then H (�̂) is non-singular. Using δ(θ , y, XA) =
A−1δ(θ , y, X ) for any non-singular matrix A (Theorem 3.2 in Koenker and Bassett, 1978), we obtain
α̃ = δ(θ, y, X H (�̂)) = H (�̂)−1δ(θ, y, X ) = H (�̂)−1π̂ . Next we can show that α̃ = α̂ because using (i) we
have α̃ = δ(θ, qy + (1 − q)X H (�̂)α̃, X H (�̂)) = δ(θ, qy + (1 − q)X π̂ , X H (�̂)) = α̂. This shows (ii). �
Proof of Proposition 2: Consider (A.10). Since Zt is i.i.d. by Assumption 1, it is sufficient to show that var(Zt)
is bounded to apply the Lindeberg–Levy’s CLT. The moment condition on xt in Assumption 2(i) is sufficient

for this purpose becauseψθ (·)2 is bounded by 1. Noting that var(Zt)=�, we have T −1/2
∑T

t=1 Zt
d→ N (0, �),

which proves the claim in the proposition. �

Proof of Proposition 3: We first prove the claim �̂
p→ �. Consider the (1,1)-submatrices of �̂ and

�, which are given by �̂11 = T −1
∑T

t=1 ψθ (v̂t )2xt x ′
t and �11 = E{ψθ (v t )2xtx′

t}. The consistency of
�̂11 is proved in two steps: (i) |�11T − �11| = op(1) and (ii) |�̂11 − �11T | = op(1) where �11T =
T −1

∑T
t=1 ψθ (vt )2xt x ′

t . The first step is obtained by applying the LLN for i.i.d. random variables under
Assumptions 1 and 2(i). We now prove the second step. Consider the (i, j)-component of |�̂11 − �11T | which
is given by |T −1

∑T
t=1{ψθ (v̂t ) − ψθ (vt )}{ψθ (v̂t ) + ψθ (vt )}xti xt j | ≤ 2T −1

∑T
t=1 |ψθ (v̂t ) − ψθ (vt )||xti ||xt j | ≤

2T −1
∑T

t=1 1[|vt |≤dT ]|xti ||xt j |, where dT = ||xt || × ||π̂ − π0||. The first inequality comes from Minkowski’s
inequality and |ψθ (·)| ≤ 1 and the second inequality is obtained using vt − v̂t = x ′

t (π̂ − π0), |x ′
t (π̂ − π0)| ≤

||xt || × ||π̂ − π0|| and the fact that |1[x≤0] − 1[y≤0]| ≤ 1[|x |≤|x−y|]. Let UT = T −1
∑T

t=1 1[|vt |≤dT ]|xti ||xt j |
and consider a set A = {UT > η} for η > 0. For any event B, we have P(A) ≤ P(A ∩ B) + P(Bc).
We choose B = {||π̂ − π0|| ≤ zT −d} where z > 0 and 0 < d < 1/2. Then, we have P(Bc) → 0 since
T 1/2(π̂ − π0) = Op(1). Now consider

P(A ∩ B) ≤ (ηT )−1
T∑

t=1

E

{∫ ||xt ||zT −d

−||xt ||zT −d
f (λ|xt )dλ|xti ||xt j |

}

(by the generalised Cebyshev inequality)

≤ (ηT )−1
T∑

t=1

E

{∫ ||xt ||zT −d

−||xt ||zT −d
f0dλ|xti ||xt j |

}

(by Assumption 3(i))

= 2z f0η
−1T −d E{||xt |||xti ||xt j |}.

The last expression converges to zero because E{||xt|||xti||xtj|} < ∞ by Assumption 2(i). Hence, we have
proved that UT = T −1

∑T
t=1 1[|vt |≤dT ]|xti ||xt j | p→ 0 which in turn implies that |�̂11 − �11T | = op(1). The

second step is now proved. By combining (i) and (ii), we have |�̂11 − �11| = op(1). The same argument
can be applied to all other diagonal and off-diagonal terms of �̂ to show their consistency. Therefore,
|�̂ − �| = op(1).

Next, we turn to the claim |D̂ − D| = op(1). We need to show the consistency of Q̂0, Q̂1, . . . , Q̂G, �̂ and
γ̂ . Since the results �̂ − �0 = op(1) and γ̂ − γ0 = op(1) are trivial, we first focus on |Q̂0 − Q0| = op(1).
Let Q0T = (2c0T T )−1

∑T
t=1 1[−c0T ≤vt ≤c0T ]xt x ′

t and Q̃0T = (2c0T T )−1
∑T

t=1 1[−ĉ0T ≤v̂t ≤ĉ0T ]xt x ′
t . As before, the

proof is carried out in three steps: (i) |Q0T − Q0| = op(1), (ii) |Q̃0T − Q0T | = op(1) and (iii) |Q̃0T − Q̂0T | =
op(1).
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We start with (i). The Mean value theorem implies that E(Q0T ) = E{T −1
∑T

t=1 f (ξT |xt )xt x ′
t },

where −c0T ≤ ξ T ≤ c0T . Noting that ξ T = op(1), | E(Q0T ) − Q0| = o(1) by Minkowski inequality
and Assumptions 2(i) and 2(ii). Using an LLN for double arrays, we have |Q0T − E(Q0T )| = op(1).
Therefore, the first step is proven.

Now we turn to (ii). Using the fact that |1[x≤0] − 1[y≤0]| ≤ 1[|x |≤|x−y|], the (i, j)th element of
|Q̃0T − Q0T | given by |(2c0T T )−1

∑T
t=1(1[−ĉ0T ≤v̂t ≤ĉ0T ] − 1[−c0T ≤vt ≤c0T ])xt x ′

t | is bounded by (2c0T T )−1
∑T

t=1

(1[|vt +c0T |≤dT ] + 1[|vt −c0T |≤dT ])|xti ||xt j | = U1T + U2T , where dT = ||xt || × ||π̂ − π0|| + |ĉ0T − c0T |, U1T =
(2c0T T )−1

∑T
t=1 1[|vt +c0T |≤dT ]|xti ||xt j | and U2T = (2c0T T )−1

∑T
t=1 1[|vt −c0T |≤dT ]|xti ||xt j |. By using the same

argument used to show UT → 0 in the proof of |�̂11 − �11T | = op(1), one can show U 1T = op(1) and U 2T

= op(1), which implies |Q̃0 − Q0| = op(1). The second step is proven.
To show step (iii), we note that Q̂0T − Q̃0T = (c0T /ĉ0T − 1)Q̃0T . Since Q̃0T = Op(1) and (c0T /ĉ0T −

1) = op(1) by Assumption 3(ii), the last step is proved. Therefore, we have: |Q̂0 − Q0| = op(1). The same

argument can be used to show |Q̂ j − Q j | = op(1) for j = 1, . . . , G. Therefore, we have D̂
p→ D. �

C. APPENDIX. SIMULATION DESIGN

The structural system is given by B[ y′
t

Y ′
t
] + �x ′

t = U ′
t , where [ y′

t
Y ′

t
] is a 2 × 1 vector of endogenous variables,

x′
t is a 4 × 1 vector of exogenous variables with the first element set to one, U′

t is a 2 × 1 vector of errors,

B =
[

1 −0.5
−0.7 1

]

and

� =
[ −1 −0.2 0 0

−1 0 −0.4 −0.5

]
.

We are interested in the first equation of the system and the system is over-identified by the zero restrictions
�13 = �14 = �22 = 0. Here, the parameters in (1) are γ 0 = 0.5 and β ′

0 = (1, 0.2), X 1 is the first two columns
in X and u is the first column in U. The above structural equation can be written as [ yY ]B ′ = −X�′ + U ,
which gives the following reduced form equations [ yY ] = X [ π0�0 ] + [ vV ], where [ π0�0 ] = −�′(B ′)−1

and [ vV ] = U (B ′)−1. We obtain π ′
0 = (2.3, 0.3, 0.3, − 0.15) and �′

0 = (2.6, 0.2, 0.6, − 0.3).
The errors [ vV ] in the reduced form equations are generated so that Assumption 2(iv) is satisfied: v

= ve − Fve −1(θ ) and V = V e − F V e −1(θ ), where ve and Ve are generated for the different simulation sets
by using the three distributions N(0, 1), t(3) and LN(0,1) with correlation −0.1, and Fve −1(θ ) and FVe −1(θ )
are the inverse cumulative functions of ve and Ve evaluated at θ . The second to fourth columns in X are
generated using the normal distribution with zero means and covariances, and unit variances. Finally, we
generate the endogenous variables [ yY ] using the reduced-form equations.
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Please correct and return this set
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

Please use the proof correction marks shown below for all alterations and corrections.

Textual mark

under matter to remain

through matter to be deleted

through matter to be deleted

through letter or through

word

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

under matter to be changed

Encircle matter to be changed

(As above)

through character or where

required

(As above)

(As above)

(As above)

(As above)

(As above)

(As above)

linking letters

between letters affected

between words affected

between letters affected

between words affected

Instruction to printer

Leave unchanged

Insert in text the matter

indicated in the margin

Delete

Delete and close up

Substitute character or

substitute part of one or

more word(s)

Change to italics

Change to capitals

Change to small capitals

Change to bold type

Change to bold italic

Change to lower case

Change italic to upright type

Insert `superior' character

Insert `inferior' character

Insert full stop

Insert comma

Insert single quotation marks

Insert double quotation

marks

Insert hyphen

Start new paragraph

No new paragraph

Transpose

Close up

Insert space between letters

Insert space between words

Reduce space between letters

Reduce space between words

If you
wish to return ryou proof by ax you should ensure that all amendments are written clearly in
dark ink and are made well within the page margins.

f


